Жуан Гомес - Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография

Здесь есть возможность читать онлайн «Жуан Гомес - Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: ООО «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография
  • Автор:
  • Издательство:
    ООО «Де Агостини»
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6; 978-5-9774-0639-0 (т. 2)
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.
Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.
Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Заметим, что 3 является ключом нашего шифра. Таким образом, наша функция записывается как

C(х)= + 3) (mod 26),

где х— изначальное значение, а С( х) — зашифрованное значение. Теперь достаточно подставить вместо буквы ее числовое значение и применить трансформацию.

Возьмем в качестве примера слово PLAY и зашифруем его.

Буква Рстоит на позиции 15, С(15) = 15 + 3 18 (mod 26), а число 18 соответствует букве S.

Буква Lстоит на позиции 11, С(11) = 11 + 3 14 (mod 26), а число 14 соответствует букве О.

Буква Астоит на позиции 0, С(0) = 0 + 3 3 (mod 26), а число 3 соответствует букве D.

Буква Yстоит на позиции 24, С (24) = 24 + 3 = 27 1 (mod 26), а число 1 соответствует букве В.

Таким образом, слово PLAY, зашифрованное с ключом 3, превратится в слово SODB.

В общем случае, если хозначает позицию буквы, которую мы хотим зашифровать (0 для А, 1 для В, и т. д.), позиция зашифрованной буквы [обозначаемая С( х)] выражается формулой

С(х)= + k) (mod n),

где n— длина алфавита (26 в английском алфавите), a k— ключ, используемый в данном шифре.

Расшифровка такого сообщения включает в себя расчеты, обратные тем, что использовались для шифрования. В нашем примере расшифровка означает применение формулы, обратной той, что использовалась выше:

С -1 (х)= k) (mod n).

В случае сообщения SODB, зашифрованного шифром Цезаря с ключом 3 с применением английского алфавита, то есть k = 3 и n = 26, мы получим:

С -1 (х)= 3) (mod 26).

Применим эту формулу следующим образом:

Для S: х = 18, С -1(18) = 18 — 3 15 (mod 26), что соответствует букве Р.

Для О: х = 14, С -1(14) = 14 — 3 11 (mod 26), что соответствует букве L.

Для D: х = 3, С -1(3) = 3–3 0 (mod 26), что соответствует букве А.

Для В: x = 1, С -1(1) = 1–3 = —2 + 26 24 (mod 26), что соответствует букве Y.

Сообщение SODB, зашифрованное шифром Цезаря с ключом 3, соответствует, как мы уже знаем, оригинальному тексту PLAY.

В заключении нашего первого знакомства с математикой криптографии мы рассмотрим новое преобразование, известное как аффинный шифр, частным случаемкоторого является шифр Цезаря. Оно определяется следующим образом:

С (a,Ь)(x)= х + b) (mod n),

где аи b— два целых числа, меньших, чем число ( n) букв в алфавите. Наибольший общий делитель (НОД) чисел аи nдолжен быть равен 1 [НОД ( а, n) = 1], потому что иначе, как мы увидим позже, получится несколько возможностей для шифрования одной и той же буквы. Ключ шифра определяется парой ( а, Ь). Шифр Цезаря с ключом 3 является, следовательно, аффинным шифром со значениями

а= 1 и b= 3.

Обобщенный аффинный шифр имеет более высокий уровень безопасности, чем обычный шифр Цезаря. Почему? Как мы видели, ключом аффинного шифра является пара чисел ( а, b). Если сообщение написано с использованием алфавита из 26 букв и зашифровано с помощью аффинного шифра, то и а, и bмогут принимать любые значения от 0 до 25. Таким образом, в этой системе шифрования с алфавитом из 26 букв возможное количество ключей составит 25 х 25 = 625. Заметим, что количество ключей для алфавита из nбукв в nраз больше, чем в шифре Цезаря.

Это значительное улучшение, но аффинный шифр все еще возможно расшифровать методом перебора всех возможных вариантов.

* * *

НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ (НОД)

Наибольший общий делитель двух чисел может быть найден с помощью алгоритма Евклида. Этот алгоритм заключается в делении одного числа на другое, а затем проведении последовательных делений предыдущего делителя на новый остаток. Процесс заканчивается, когда остаток равен 0. Делитель последней операции деления и будет наибольшим общим делителем данных чисел.

Например, найдем НОД (48,30).

Разделим 48 на 30, получим остаток 18 и частное 1.

Разделим 30 на 18, получим остаток 12 и частное 1.

Разделим 18 на 12, получим остаток 6 и частное 1.

Разделим 12 на 6, получим остаток 0 и частное 2.

Мы закончили алгоритм.

НОД (48,30) = 6.

Если НОД( а, n) = 1, мы говорим, что аи nвзаимно просты.

Соотношение Везу, имеющее большое значение в криптографии, устанавливает следующий факт: для двух целых чисел аи n, больших нуля, существуют целые числа kи q, такие что НОД( а, n) = + nq.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография»

Представляем Вашему вниманию похожие книги на «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография»

Обсуждение, отзывы о книге «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

андрей 14 апреля 2025 в 08:05
мне понравилась книга
x