Игнаси Белда - Том 33. Разум, машины и математика. Искусственный интеллект и его задачи

Здесь есть возможность читать онлайн «Игнаси Белда - Том 33. Разум, машины и математика. Искусственный интеллект и его задачи» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: Де Агостини, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 33. Разум, машины и математика. Искусственный интеллект и его задачи: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.

Том 33. Разум, машины и математика. Искусственный интеллект и его задачи — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6. Интерпретация и оценка данных. Несмотря на интенсивное использование компьютерных методов в интеллектуальном анализе данных, этот процесс по прежнему далек от полной автоматизации. Значительная часть интеллектуального анализа данных выполняется вручную, а качество результатов зависит от опыта инженера. По этой причине после завершения процесса извлечения знаний необходимо проверить корректность выводов, а также убедиться, что они нетривиальны (к примеру, тривиальным будет знание о том, что рост всех людей заключен на интервале от 1,4 до 2,4 м). Также при реальном интеллектуальном анализе одни и те же данные анализируются при помощи разных методологий. На этом этапе производится сравнение результатов, полученных с помощью различных методов анализа и извлечения знаний.

* * *

ПАПА РИМСКИЙ — ПРИШЕЛЕЦ?

В 1996 году Ханс-Петер Бек-Борнхольдти Ханс-Херманн Даббенв статье, опубликованной в престижном журнале Nature, рассмотрели вопрос: действительно ли Папа Римский — человек? Они рассуждали следующим образом: если мы выберем одного человека случайным образом, то вероятность того, что он будет Папой Римским, составит 1 к 6 миллиардам. Продолжим силлогизм: вероятность того, что Папа Римский — человек, равна 1 к 6 миллиардам.

Опровержение этих рассуждений привели Шон Эдди и Дэвид Маккей в том же самом журнале, применив условную вероятность. Они рассуждали следующим образом: вероятность того, что некий человек — Папа Римский, вовсе не обязательно равна вероятности того, что некий индивид — человек, если он — Папа Римский. Применив математическую нотацию, имеем:

Р(человек| Папа Римский)=/= р(Папа Римский| человек).

Если мы хотим узнать значение Р(человек | Папа Римский), нужно применить теорему Байеса. Получим:

Допустим, вероятность того, что некий индивид (житель планеты Земля) — пришелец, пренебрежимо мала Том 33 Разум машины и математика Искусственный интеллект и его задачи - изображение 57). Тогда вероятность того, что этот индивид — человек, стремится к 1 Том 33 Разум машины и математика Искусственный интеллект и его задачи - изображение 58. Вероятность того, что пришелец будет избран Папой Римским, еще меньше ( Р (Папа Римский| пришелец)< 0,001). Следовательно, можно со всей уверенностью утверждать, что Проклятие размерности Прекрасно известно что интуиция не подкрепленная - фото 59

Проклятие размерности

Прекрасно известно, что интуиция, не подкрепленная размышлениями, — злейший враг статистики и теории вероятностей. Многие думают, что при анализе данных большой объем входных данных (но не выборок) позволит получить больше информации, а следовательно, и больше знаний. С этим заблуждением традиционно сталкиваются начинающие специалисты по интеллектуальному анализу данных, и распространено оно настолько широко, что специалисты называют его проклятием размерности.

Суть проблемы заключается в том, что при добавлении к математическому пространству дополнительных измерений его объем возрастает экспоненциально.

К примеру, 100 точек (102) — достаточная выборка для единичного интервала, при условии, что расстояние между точками не превышает 0,01. Но в кубе единичной стороны аналогичная выборка должна содержать уже 1000000 точек (106), а в гиперкубе размерностью 10 и с длиной стороны, равной 1, — уже 1020 точек. Следовательно, чтобы при добавлении новых измерений выборка по-прежнему охватывала пространство должным образом (иными словами, чтобы плотность математического пространства оставалась неизменной), объемы выборок должны возрастать экспоненциально. Допустим, что мы хотим найти закономерности в результатах парламентских выборов и располагаем множеством данных об избирателях и их предпочтениях. Часть имеющихся данных, к примеру рост избирателей, возможно, не будет иметь отношения к результатам голосования. В этом случае лучше исключить переменную «рост», чтобы повысить плотность выборок избирателей в математическом пространстве, где мы будем работать.

Именно проклятие размерности стало причиной появления целого раздела статистики под названием отбор характеристик (англ, feature selection ). В этом разделе изучаются различные математические методы, позволяющие исключить максимально большой объем данных, не относящихся к рассматриваемой задаче. Методы отбора характеристик могут варьироваться от исключения избыточной или связанной информации до исключения случайных данных и переменных, имеющих постоянное значение (то есть переменных, значения которых на множестве выборок практически не меняются). В качестве примера приведем переменную «гражданство».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи»

Представляем Вашему вниманию похожие книги на «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Искусственный Интеллект RT - Заповедник мертвецов
Искусственный Интеллект RT
Отзывы о книге «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи»

Обсуждение, отзывы о книге «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x