Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь есть возможность читать онлайн «Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Результат симметрии S Теперь нам известны преобразования R и S Что с ними - фото 9

Результат симметрии S.

Теперь нам известны преобразования R и S. Что с ними можно сделать?

ЛЕВИ-СТРОСС: Выполнить сначала первое, а затем — второе?

ВЕЙЛЬ: Именно! Основное свойство этих преобразований заключается в том, что для двух таких преобразований можно определить их композицию. Применим поворот R, затем — симметрию S и обозначим полученный результат как SR. Мы привыкли читать слева направо, поэтому было бы логичнее записать RS, так как поворот R выполняется первым. Однако обозначение SR имеет свои преимущества.

Найдем композицию двух исходных преобразований.

Композиция преобразований R и S На рисунке показано что при движении SR - фото 10

Композиция преобразований R и S.

На рисунке показано, что при движении SR вторая вершина остается неизменной, а две другие меняются местами. Следовательно, порядок следования вершин меняется с 1—2—3 на 3—2—1. Обратите внимание, что этот же результат можно

45

получить, применив к исходному треугольнику осевую симметрию, ось которой проходит через вторую вершину. Два этих преобразования совпадают.

Композиция преобразований SR представляет собой симметрию Теперь определим RS - фото 11

Композиция преобразований SR представляет собой симметрию.

Теперь определим RS, то есть сначала применим S, а затем R, и посмотрим, как изменится порядок вершин.

ЛЕВИ-СТРОСС: Но от перемены мест множителей произведение не меняется.

ВЕЙЛЬ: Ах, эта юность, эта святая простота! Как же сложно по-новому посмотреть на то, что всем известно с детства. «От перемены мест множителей произведение не меняется» только при умножении чисел: трижды семь — то же, что и семью три. Однако нет никакой причины, по которой этот закон должен выполняться для других операций, например для сочетания движений, оставляющих исходную фигуру неизменной. Между прочим, это четко видно в нашем примере. Если сначала мы выполним S, а затем R, то получим...

Композиция преобразований S и R Вершины будут располагаться в порядке 213 - фото 12

Композиция преобразований S и R.

Вершины будут располагаться в порядке 2—1—3. Таким образом, результаты движений SR и RS отличаются.

46

ЛЕВИ-СТРОСС: Но RS — тоже симметрия.

Преобразование RS симметрия ВЕЙЛЬ Да и ее ось проходит через третью - фото 13

Преобразование RS — симметрия.

ВЕЙЛЬ: Да, и ее ось проходит через третью вершину. Для того чтобы при симметрии треугольник оставался неизменным, ось симметрии должна проходить через его центр и одну из вершин. На основе R и S можно определить все возможные разновидности такой симметрии. Если ось симметрии проходит через вторую вершину, это симметрия SR, если через третью — RS. Добавив к ним собственно симметрию S, ось которой проходит через первую вершину, получим полный перечень:

S, SR и RS — все возможные виды симметрии, оставляющие треугольник неизменным.

Виды симметрии оставляющие треугольник неизменным ЛЕВИСТРОСС Послушайте - фото 14

Виды симметрии, оставляющие треугольник неизменным.

ЛЕВИ-СТРОСС: Послушайте, господин Вейль, чтобы мы могли составить композицию двух преобразований, они обязательно должны отличаться?

47

ВЕЙЛЬ: Вовсе нет. Ничто не мешает применить одно и то же преобразование несколько раз подряд. Так как поворот фигуры два раза подряд на 120° равносилен повороту на 240°, движение RR также будет поворотом, при котором треугольник остается неизменным. Вместо RR будем записывать R 2. Если мы повернем фигуру еще на 120°, она совпадет с исходной. Таким образом, R3 никак не изменяет треугольник. Мы не учли преобразование, которое оставляет порядок следования вершин неизменным — 1—2—3. Будем называть это преобразование тождественным и обозначим его через I. Обратите внимание, что композицией тождественного преобразования и любого другого движения будет это движение.

Мы доказали, что R 3= I, так как результатом трех поворотов является исходная фигура. Говорят, что порядок R равен трем. В общем случае порядок преобразования указывает, сколько раз его нужно применить, чтобы получить тождественное преобразование. S имеет порядок, равный двум — если мы повторим симметрию дважды, то получим исходный треугольник. Мы уже показали, что S, RS и SR — симметрии треугольника. Какие повороты оставляют фигуру неизменной? Обратите внимание, что поворот обладает этим свойством только тогда, когда угол поворота кратен 120°. Следовательно, все возможные повороты — это R, R 2и R 3= I.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Представляем Вашему вниманию похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Обсуждение, отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x