Из моделей нейронов создаются целые сети, которые предназначаются для имитации тех или иных функций нервной системы. Конструируются сети, меняющие свои параметры в соответствии с изменениями характера раздражений, а также сети, предназначенные для запоминания данных и способные к «обучению».
На втором симпозиуме по бионике сообщалось, что в США создана обучающаяся машина на нейронной сети из 102 мемисторов. Мемисторы — это жидкие элементы, конструктивно оформленные в виде небольших пластмассовых сосудов объемом в одну треть кубического сантиметра. Сосуды заполнены электролитом и имеют электроды. Действие элементов основано на изменении сопротивления от 3 до 100 ом. Сеть из таких мемисторов имитирует работу зрительного органа человека при распознавании образов. На базе этой машины предполагается создать устройство для решения комплексных навигационных задач, предсказания погоды и т. п.
В США разрабатывается также машина, предназначенная для распознавания речи и печатания текста с голоса. Специалисты занимаются также проблемой преобразования набора чисел в записанный на магнитную ленту человеческий голос. Этот голос вводится в электронно-вычислительную машину, и она производит математический анализ звуков. А затем из полученных чисел вновь воссоздается (синтезируется) человеческая речь, также записанная на магнитную пленку. Подобный анализ и синтез речи будут очень ценными для сужения каналов связи.
Большое значение для связи в особых случаях боевого применения военной техники, например самолетов, будет иметь преобразование речевого спектра частот в механические колебания. Эти механические колебания будут восприниматься не ухом, а кожей человека.
Дело в том, что в летящем самолете шум мешает приему звуковых сигналов органами слуха. Кожа восприимчива к частотам, в девять раз меньшим, чем частоты, воспринимаемые ухом (1000–4000 гц). Поэтому, когда преобразовали звуковые частоты в механические колебания, операторы могли определять некоторые звуки при помощи пальцев, находящихся на вибраторе. Кроме снижения влияния шума такая передача обладает и большей скрытностью.
Исследования в области обучаемых и самообучающихся машин ведутся и в СССР. Как сообщил в одном из своих выступлений в печати известный советский ученый В. М. Глушков, в Вычислительном центре Академии наук УССР (теперь он называется Институтом кибернетики) электронную машину «обучали» смыслу фраз на русском языке. Программа была предусмотрена такая: машине сообщается некоторое число осмысленных фраз; затем в процессе проверки она правильно отсортировала осмысленные фразы от бессмысленных, причем делала это не только для тех фраз, которые она усвоила в процессе «обучения», но и для незнакомых ей фраз.
При моделировании на машине процесса «обучения» смыслу фраз на русском языке можно было имитировать различные типы «обучения» — от голой зубрежки до склонности к поспешным обобщениям и неуемному фантазированию.
Одним из сотрудников Института автоматики и телемеханики Академии наук СССР была выдвинута гипотеза компактности, позволяющая объяснить процесс обучения и искусственно воспроизвести его. В настоящее время гипотеза компактности проверяется на животных.
Чтобы понять смысл гипотезы компактности, представим себе плоскость, разделенную на клетки и заполненную «n»-фотоэлементами, имитирующими «приемники» световых раздражений-рецепторов (рис. 28, слева). Если на это своеобразное фотополе проектируется изображение, то возбуждаются вполне определенные фотоэлементы. Состояние всего фотополя можно охарактеризовать одной точкой, как говорят, в пространстве рецепторов (рис. 28, справа).
Рис. 28. Схема процесса «обучения» машин опознаванию буквы А.
Эта точка — вершина единичного куба. Значит, букве А будет соответствовать в зависимости от написания одна группа точек, букве Б — другая группа точек в пространстве рецепторов. Ученые предполагают, что и в мозгу человека каким-то путем формируются области в пространстве рецепторов, соответствующие тому или иному образу.
Гипотезу компактности можно сформулировать так: человек воспринимает множество различных зрительных ощущений как единый образ, если множество точек, которое соответствует этому ощущению, в пространстве рецепторов является в известном смысле компактным множеством. Задача «обучения» машины, таким образом, заключается в проведении в пространстве поверхностей, отделяющих одну область от другой, а это и означает способность различать образы. В процессе «обучения» машина «запоминает» положение точек, соответствующих буквам А, Б и т. д. в пространстве рецепторов. В результате, когда потом машине показывают букву, она определяет, где лежит точка, характеризующая показанное изображение, и в зависимости от этого «отвечает», какая это буква.
Читать дальше