Томительную паузу нарушил А.Н. Крылов: "Насчет туркестанских рудников дело обстоит весьма просто — вот пятьсот рублей, — и, вынув бумажку с портретом Петра I, он передал ее председательствовавшему на заседании А.Е. Ферсману. — Сложнее дело с Алтаем. Докладчик не сказал, что рудники находятся на землях великих князей Владимировичей. Вольфрам — это быстрорежущая сталь, т. е. более чем удвоение выделки шрапнелей. Если где уместна реквизиция или экспроприация, то именно здесь: не будет шрапнелей — это значит проигрыш войны, а тогда не только Владимировичи, но и вся династия к чертовой матери полетит".
Еще одним препятствием, тормозившим развитие вольфрамовой промышленности в нашей стране, была "помощь" зарубежных специалистов. В 1931 году в музее Московского университета, разбирая старые минералогические коллекции, ученые натолкнулись на образцы шеелита из неизвестного до того времени месторождения в Таджикистане. Оказалось, что эти образцы были найдены еще в 1912 году и присланы в Москву для исследования. Однако привлеченные в качестве консультантов немецкие геологи забраковали месторождение как нерентабельное, и царское правительство поставило на нем крест. Комиссия, направленная в Таджикистан спустя несколько месяцев после музейной находки, обнаружила там крупные залежи вольфрама.
Примерно в эти же годы известный советский геолог академик С.С. Смирнов вместе со своими учениками развернул на территории нашей страны широкие поиски вольфрамовых месторождений. Не одну тысячу километров в холод и зной пришлось преодолеть геологам. Пешком, на собаках, на оленях исколесили они вдоль и поперек многие районы страны. И там, где проходили мужественные разведчики недр — в Забайкалье, Якутии, на Охотском побережье, возникали новые рудники, строились новые заводы — создавалась советская вольфрамовая промышленность.
В наше время примерно 80 % всего добываемого в мире вольфрама потребляет металлургия качественных сталей, около 15 % идет на производство твердых сплавов, остальные 5 % промышленность использует в виде чистого вольфрама — металла, обладающего удивительными свойствами.
Чтобы расплавить вольфрам, его нужно нагреть до такой температуры, при которой большинство металлов уже испаряется — до 3410 °C. Сам же вольфрам мог бы оставаться в жидком состоянии даже вблизи самого Солнца: температура кипения его почти 6000 °C. Тугоплавкость этого элемента и обеспечила ему применение в одной из важнейших отраслей промышленности — электротехнике.
С тех пор как в начале XX века вольфрамовая нить вытеснила применявшиеся ранее для изготовления электрических ламп угольные, осмиевые и танталовые нити, каждый вечер в наших домах вспыхивают крохотные вольфрамовые молнии. Ежегодно в мире производят несколько миллиардов электроламп. Миллиарды огней!.. А много ли это? Судите сами: с начала нашего летоисчисления человечество прожило лишь немногим более миллиарда минут [5] 29 апреля 1902 года в 10 часов 40 минут время начало отсчитывать второй миллиард минут новой эры
.
Ученые и инженеры постоянно совершенствуют электрическую лампу, стремясь к тому, чтобы ее жизнь продолжалась как можно дольше. Подобно тому как тает горящая восковая свеча, при включении лампы вольфрам начинает испаряться с поверхности нити накаливания. Чтобы уменьшить испарение и тем самым продлить срок службы лампы, в нее под давлением обычно вводят различные инертные газы. А недавно предложено использовать для этой цели пары иода, который, как выяснилось, играет любопытную роль: он ловит испарившиеся молекулы вольфрама, вступает с ним в химическую связь, а затем оседает на нити, тем самым возвращая ей "беглецов". Такая лампа намного долговечнее.
Ассортимент электрических ламп, выпускаемых промышленностью, весьма разнообразен: от миниатюрных "бусинок", используемых в медицине, до мощных прожекторных "солнц". В 1967 году на Всемирной выставке в Монреале в павильоне СССР демонстрировалась установка радиационного нагрева "Уран-1", одним из главных элементов которой служит лампа оригинальной конструкции, снабженная водяным и воздушным охлаждением. В сравнительно небольшой колбе из жаростойкого кварца, наполненной инертным газом ксеноном, находятся два вольфрамовых электрода. При включении лампы между электродами вспыхивает газовая плазма, раскаленная до 8000 °C. Специальный зеркальный отражатель, по сравнению с которым обычные зеркала кажутся тусклыми жестянками, направляет инфракрасные лучи искусственного солнца (лампа воссоздает солнечный спектр) в оптическую систему установки, где они фокусируются в единый поток диаметром чуть больше сантиметра. Температура в фокусе пучка лучей достигает 3000 °C. В этом горячем режиме "Уран-1" может непрерывно работать сотни часов.
Читать дальше