Даже перевод слова "вольфрам" — волчья пена — вряд ли объяснит происхождение этого названия. В самом деле, что может быть общего у элемента VI группы Периодической системы Д.И. Менделеева с лесным хищником?
…Еще в давние времена металлурги не раз сталкивались со странным явлением: время от времени по совершенно непонятным причинам выплавка олова из руды резко падала. Поскольку технико-экономические показатели плавки не могли не волновать и наших предков, они стали внимательно присматриваться к оловянной руде, идущей в плавку. Вскоре им удалось подметить такую закономерность: неприятности возникали тогда, когда в руде встречались тяжелые камни бурого или желтовато-серого цвета. Вывод напрашивался сам собой: камень "пожирает олово, как волк овцу". А коли так, то пусть и зовется этот злой камень "волчьей пеной" — вольфрамитом. В некоторых других странах, например в Швеции, встречался подобный минерал тунгстен, что означает "тяжелый камень".
Открытие вольфрама связано с именем знаменитого шведского химика Карла Вильгельма Шееле. Фармацевт по профессии, он работал в аптеках ряда городов, где и проводил свои замечательные исследования, немало обогатившие науку. В 1781 году Шееле установил, что тунгстен (впоследствии названный шеелитом) представляет собой соль неизвестной тогда кислоты, и выделил из нее белый порошок — оксид нового элемента. Но дальше этого у него дело не пошло.
Тунгстеновой проблемой всерьез заинтересовались испанские химики братья Фаусто и Хуан Хозе д'Элуяр, начавшие проводить опыты с вольфрамитом и тунгстеном. Лишь спустя два года к ним пришла удача. Смешав белый порошок, полученный из вольфрамита, с толченым древесным углем, они сильно нагрели смесь в тигле. Когда охлажденный после опыта тигель был открыт, в нем оказалась темно-коричневая масса, рассыпавшаяся в руках. Вооружившись лупой, исследователи заметили в порошке крохотные металлические шарики — один, другой, третий. Это был вольфрам. Могли ли думать братья д'Элуяр, глядя на крупицы нового металла, что ему суждено произвести поистине переворот в промышленности?
В 1864 году англичанин Роберт Мюшет впервые ввел вольфрам (примерно 5 %) как легирующую добавку в сталь. Сталь, вошедшая в историю металлургии под названием "самокал Мюшета", могла выдерживать красное каление, не только сохраняя, но и увеличивая свою твердость, т. е. обладала свойством самозакалки. Резцы, изготовленные из этой стали, позволили в полтора раза повысить скорость резания металла (7,5 метра в минуту вместо 5).
Спустя четыре десятилетия появилась быстрорежущая сталь, содержащая уже до 8 % вольфрама. Теперь скорость резания металла достигла 18 метров в минуту. Прошло еще несколько лет, и скорость обработки металла возросла до 35 метров в минуту. Так примерно за полвека вольфрам сумел повысить производительность металлорежущих станков в семь раз!
Ну, а как еще выше поднять скорость резания? Стали это уже было не под силу, и даже вольфрам не мог ей ничем помочь. Неужели достигнут предел? Неужели быстрее резать металл невозможно?
Ответ дал все тот же вольфрам. Нет, он не исчерпал еще своих возможностей и не намерен пасовать перед температурой в битве за скорость обработки металла. В 1907 году был создан сплав, состоящий из вольфрама, хрома и кобальта — стеллит, ставший родоначальником широко известных ныне твердых сплавов, которые позволили еще более повысить скорость резания. В наши дни она достигает уже 2000 метров в минуту.
От 5 до 2000! Такой громадный путь пройден техникой металлообработки. И вехами на этом пути были все новые и новые вольфрамовые материалы.
Современные твердые сплавы представляют собой полученную спеканием смесь карбидов вольфрама и некоторых других элементов (титана, ниобия, тантала). При этом зерна карбидов как бы цементируются кобальтом. Такие материалы не теряют твердости даже при 1000 °C, допуская тем самым колоссальные скорости обработки металла. Твердость одного из сплавов на основе карбида вольфрама — "рэлита" настолько велика, что если по образцу из этого сплава провести напильником, то на нем (на напильнике!) остается борозда
Металлообработка была основным, но не единственным направлением, по которому вольфрам вторгался в технику. Еще в середине прошлого века было замечено, что ткани, пропитанные натриевой солью вольфрамовой кислоты, приобретали огнеупорность. Широкое распространение получили тогда же и краски, содержащие вольфрам, — желтые, синие, белые, фиолетовые, зеленые, голубые. Эти краски использовали в живописи, в производстве керамики и фарфора. Кстати, до сих пор сохранились изготовленные еще в XVII веке в Китае по заказу императора изумительные фарфоровые изделия, окрашенные в необычайно красивый цвет — "цвет персика". По преданию, чтобы добиться этого, древним мастерам пришлось провести около восьми тысяч опытов с различными минералами и соединениями. Как показал анализ, проведенный уже в наши дни, своей нежной окраской фарфор обязан оксиду вольфрама.
Читать дальше