Позднее Гейзенберг, рассказывая о пути, которым он шел к принципу неопределенности, много раз отмечал, что поворотным пунктом стал момент, когда он вспомнил о разговоре с Эйнштейном в Берлине. Часть пути, окончившегося поздним зимним вечером в Копенгагене, он прошел не один. Спутником, которого он особенно ценил, был Вольфганг Паули.
В октябре 1926 года, когда в Копенгагене Шредингер, Бор и Гейзенберг с головой погрузились в дебаты, Паули спокойно жил в Гамбурге и занимался анализом столкновения двух электронов. Воспользовавшись вероятностной интерпретацией Борна, он обнаружил некое “темное место”, как он выразился в письме Гейзенбергу. Паули понял, что при столкновении электронов их относительный импульс “надо считать контролируемым”, а их положения — “неконтролируемыми” 49. Вероятное изменение импульса сопровождается одновременным, но неопределимым изменением координаты. Он показал, что “одновременно спрашивать” об импульсе ( р ) и координате ( q ) нельзя 50. “Можно смотреть на мир p -глазом, а можно q -глазом, подчеркивал Паули, — но если открыть сразу оба глаза, заблудишься” 51. Дальше Паули не продвинулся, а его словам о “темном месте” Гейзенберг не придал особого значения. До открытия принципа неопределенности они с Бором могли говорить только об интерпретации квантовой механики и корпускулярно-волновом дуализме.
Двадцать третьего февраля 1927 года Гейзенберг, подводя итоги работы над принципом неопределенности, отправил Паули письмо на четырнадцати страницах. Критике венского “бича Божьего” он доверял больше всего. “На горизонте квантовой теории забрезжил рассвет”, — ответил Паули 52. Мучительные сомнения рассеялись, и 9 марта Гейзенберг переделал свое письмо в статью. Только тогда он написал Бору в Норвегию: “Я думаю, мне удалось разобраться в ситуации, когда и [импульс] p , и [координата] q заданы с определенной точностью. Я написал черновик статьи по этому вопросу, который вчера отправил Паули” 53.
В этот момент отношения Гейзенберга и Бора были настолько натянуты, что он предпочел не посылать Бору ни экземпляр статьи, ни подробное изложение результатов своей работы. Позднее Гейзенберг объяснил, что “хотел узнать реакцию Паули до того, как вернется Бор”, поскольку “предчувствовал, что интерпретация Бору опять не понравится. Поэтому сначала я хотел получить какую-то поддержку и понять, принимает ли ее кто-нибудь еще” 54. Через пять дней после того, как Гейзенберг отправил письмо, Бор вернулся в Копенгаген.
Бор, отдохнувший за время месячных каникул, сначала разобрался с институтскими делами, а после внимательно прочитал статью о неопределенности. Когда они встретились чтобы обсудить ее, Бор сказал ошеломленному Гейзенбергу, что статья “не совсем правильна” 55. Бор не только не согласился с интерпретацией Гейзенберга, но и обнаружил ошибку в анализе мысленного эксперимента с микроскопом на γ-лучах. Когда Гейзенберг еще был студентом в Мюнхене, именно незнание устройства микроскопа чуть не привело его к провалу на экзамене. Тогда только вмешательство Зоммерфельда позволило ему защитить диссертацию. После защиты Гейзенберг, которому было очень стыдно, специально изучал устройство микроскопа, а тут выяснилось, что ему еще было чему учиться.
Бор сказал Гейзенбергу, что неправильно считать источником неопределенности импульса электрона нарушение непрерывности при его столкновении с γ-квантом. Точно измерить импульс электрона невозможно не из-за нарушения непрерывности и неконтролируемого характера изменения импульса, а из-за того, что измерить точно само это изменение невозможно. Бор объяснял, что эффект Комптона позволяет вычислить изменение импульса с требуемой точностью, если только апертура микроскопа позволяет измерить угол, на который рассеивается электрон при столкновении. Однако невозможно зафиксировать точку попадания фотона в микроскоп. Именно это Бор считал источником неопределенности импульса электрона. Координата электрона при столкновении с фотоном не определена, поскольку конечная апертура любого микроскопа ограничивает его разрешающую способность, а следовательно, и возможность установить точно, где находится микрообъект. Всего этого Гейзенберг не учел, но худшее было впереди.
Бор утверждал, что при правильном анализе мысленного эксперимента обязательно надо использовать волновую интерпретацию рассеяния квантов света. Бор, пытавшийся связать волновые пакеты Шредингера и новый принцип Гейзенберга, считал, что в основе квантовой неопределенности лежит корпускулярно-волновой дуализм излучения и материи. Если электрон рассматривать как волновой пакет, то чтобы он имел точную, строго определенную координату, он должен быть локализован, а не размазан по пространству. Такой волновой пакет образуется при суперпозиции некоторого набора волн. Чем более компактно локализован, или ограничен, волновой пакет, тем больше требуется различных волн и тем большее число различных частот и длин волн в этом участвует. Одна волна обладает точно определенным импульсом, но известно, что у волнового пакета, состоящего из нескольких наложенных друг на друга волн с разной длиной волны, строго определенного импульса быть не может. То есть чем точнее определен импульс волнового пакета, тем меньше число волн, из которых он строится, и тем больше он размазан по пространству. Поэтому неопределенность его координат возрастает. Следовательно, одновременное точное измерение координаты и импульса невозможно. Бор показал, что соотношение неопределенности можно вывести исходя из волновой модели электрона.
Читать дальше