Гейзенберг показал, что если Δp и Δq — “неточности” или “неопределенности” импульса и координаты, то Δp , помноженное на Δq, всегда больше или равно h/2π: ΔpΔq ≥ h/2π , где h — постоянная Планка 37. Эта формула является выражением принципа неопределенности или “неточности знания при одновременном измерении” координаты и импульса. Гейзенберг обнаружил еще одно “соотношение неопределенности”, в которое входит другая пара так называемых сопряженных координат: энергия и время. Если ΔE и Δt — неопределенности, с точностью до которых могут быть измерены энергия системы E и время t, за которое происходит измерение, то ΔEΔt ≥ h/2π.
Вначале бытовало мнение, что принцип неопределенности — это результат технологического несовершенства используемой в эксперименте аппаратуры. Считалось, что если усовершенствовать приборы, то неопределенность исчезнет. Это непонимание возникло из-за того, что Гейзенберг, желая подчеркнуть значение принципа неопределенности, использовал мысленные эксперименты. Но мысленные эксперименты — это такие эксперименты, в которых совершенное оборудование работает в идеальных условиях. Неопределенность, открытая Гейзенбергом, — сущность реальности. Он утверждал, что в атомном мире увеличить точность наблюдения сверх предела, установленного соотношениями неопределенности и значением постоянной Планка, нельзя. Возможно, слово “непознаваемость” лучше “неточности” и “неопределенности” подходит для определения замечательного открытия Гейзенберга. Он считал, что сам акт точного измерения координаты электрона делает невозможным точное измерение его импульса в тот же момент времени. Для него было очевидно, почему это происходит. Когда фотон, с помощью которого можно “увидеть” электрон и определить его местоположение, ударяет по электрону, происходит непредсказуемое возмущение электрона. Именно это неустранимое возмущение в процессе измерения Гейзенберг считал источником неопределенности 38.
Гейзенберг был уверен, что такое объяснение подкреплено фундаментальным уравнением квантовой механики: pq — qp = -ih/2π, где p и q — это импульс и координата частицы. Присущая природе неопределенность является причиной некоммутативности — того факта, что произведение p x q не равно q x p . Если за экспериментом по определению положения электрона следует эксперимент, в котором определяется его скорость (и, следовательно, импульс), то получатся два точно определенных числа. Перемножив их, получим некоторое число А. Теперь повторим эти эксперименты в обратном порядке, измерив сначала скорость электрона, а затем его координату. Получится совершенно другой результат — число В. В каждом из случаев первое измерение вызывает возмущение, влияющее на результат второго измерения. Если бы возмущений, в каждом эксперименте разных, не было, то p x q равнялось бы q x p: тогда разность pq — qp равнялась бы нулю и не было бы ни неопределенности, ни квантового мира.
Гейзенберг пришел в восторг, увидев, что все детали пазла точно подошли друг к другу. Его версия квантовой механики строилась из некоммутирующих между собой матриц, представляющих такие наблюдаемые величины, как координата и импульс. С самого начала, с тех пор, как он обнаружил это странное правило, согласно которому порядок перемножения двух наборов чисел оказывается существенной частью математического аппарата новой механики, стоящую за этим правилом физику покрывала завеса тайны. Теперь ему удалось эту завесу приподнять. Согласно Гейзенбергу, только “неопределенность, выраженная неравенством ΔpΔq ≥ h/2π, делает возможным существование равенства” pq — qp = - ih/2π 39. Он утверждал, что только благодаря неопределенности “его выполнение становится возможным без требования изменить физический смысл величин p и q ” 40.
Принцип неопределенности выявил фундаментальное различие между квантовой и классической механикой. В классической физике координата частицы и ее импульс в принципе могут быть измерены одновременно с любой степенью точности. Если в каждый момент времени положение и скорость тела точно известны, можно точно указать путь, по которому тело двигалось в прошлом, где оно находится сейчас и по какому пути будет двигаться дальше. Эти устоявшиеся понятия повседневной физики “можно точно так же определить и для квантовых процессов”, утверждал Гейзенберг 41. Однако их ограниченность становится очевидной, если попытаться измерить одновременно две сопряженные величины: координату и импульс или энергию и время.
Читать дальше