«Это было около полуночи, когда я неожиданно вспомнил мои беседы с Эйнштейном и, в частности, его фразу: “Только теория решает, что является наблюдаемым, а что нет”. Я вдруг сообразил, что здесь-то и нужно искать ключ к загадке, которая так занимала нас [его и Бора]. Тогда я решил совершить ночную прогулку по парку, чтобы подумать над значением этой фразы Эйнштейна».
Именно во время этой ночной прогулки, когда он размышлял о значении фразы Эйнштейна, Гейзенберг открыл свои знаменитые «соотношения неопределенностей» {148}, которые гласят, что произведение «неопределенности» положения частицы и «неопределенности» ее количества движения (или импульса) {149}обязано быть больше постоянной Планка h {150}.
Гейзенберг понял, что соотношения неопределенностей позволяют прояснить условия, при которых квантовую частицу можно одновременно описывать и как волну, и как частицу. Например, ранее казалось, что наблюдение в детекторах прямых треков частиц, видимых на макроскопическом уровне, обязывает описывать частицу исключительно как локализованную корпускулу. Однако соотношения неопределенностей показывали, что ненулевая ширина трека хорошо согласуется с проявлением волнового поведения частицы на масштабах расстояний, сравнимых с этой шириной.
Когда Бор вернулся из отпуска в Норвегии, Гейзенберг принялся с энтузиазмом объяснять ему свои новые идеи, возникшие на основе философского утверждения Эйнштейна («Только теория решает, что является наблюдаемым, а что нет»).
Между тем Бор имел собственные соображения по этому поводу и, в частности, был убежден, что интерпретацию квантовой механики необходимо основывать не на логической дедукции, продиктованной самой теорией (как предлагал Эйнштейн), но на новой эпистемологической концепции, введенной ad hoc для толкования квантовой теории и именуемой «принципом дополнительности». Как рассказывал Гейзенберг, в представлении Бора «дополнительность должна была описывать ситуацию, когда можно ухватить одно и то же явление двумя разными способами интерпретации (например, волновым и корпускулярным). Эти два способа должны были взаимно исключаться, при этом дополняя друг друга таким образом, что только суперпозиция двух моделей могла предоставить исчерпывающее описание феномена».
Спор между молодым Гейзенбергом (которому было тогда 25 лет) и Бором (чья работа 1913 г. существенно повлияла на развитие квантовой теории) набирал силу. Гейзенберг восхищался Бором как ученым и почитал его, как отца. Он ожидал, что Бор по достоинству оценит новизну концептуального продвижения, которое представляло собой открытие соотношений неопределенностей. Бор, однако, был весьма сдержан, он критиковал технические детали и, в частности, утверждал, что лишь его идея дополнительности является достаточно общей, чтобы служить основой согласованной интерпретации квантовой теории. Напряжение между двумя физиками нарастало, влияя на их личные отношения. Столкнувшись с непреодолимым упрямством Бора, Гейзенберг был вынужден оставить попытки убедить его в обоснованности общего эпистемологического подхода, предложенного Эйнштейном, и с неохотой принял необходимость использовать язык интерпретации, основанный на принципе дополнительности . Он самостоятельно опубликовал открытие соотношений неопределенностей и их следствий для интерпретации квантовой реальности, оставив Бора писать подробный трактат на тему принципа дополнительности, представленный им через несколько месяцев на Сольвеевском конгрессе осенью 1927 г.
Пятый Сольвеевский конгресс, состоявшийся в Брюсселе осенью 1927 г., был важнейшим событием. Он стал переломным моментом не только для мирового сообщества физиков-теоретиков {151}, но и для научной карьеры Эйнштейна. На этом конгрессе Эйнштейн выступил в роли оппонента новой интерпретации квантовой теории, предложенной Бором на основе идей Борна (о вероятностной интерпретации амплитуды A ), Гейзенберга (о соотношении неопределенностей), а также на основе концепции дополнительности. Физики-теоретики с большим интересом ожидали реакцию Эйнштейна. Для всех он был не только величайшим физиком современности, но и тем, чьи революционные идеи лежали в основе открытия и понимания квантовой реальности. Физики молодого поколения (Гейзенберг, Йордан, Паули и др.) боготворили Эйнштейна и видели себя его скромными последователями. Собирался ли духовный отец теоретической физики благословить в купели дополнительности новое квантовое дитя, которое все считали его собственным интеллектуальным отпрыском? Оказалось, нет! Эйнштейн не верил в интерпретацию квантовой теории, отстаиваемую Бором.
Читать дальше
Конец ознакомительного отрывка
Купить книгу