Набравшись уверенности, Гейзенберг приступил к описанию физических концепций и математического аппарата новой квантовой теории. В действительности за последние несколько месяцев с необычайной быстротой был разработан практически новый математический формализм, который, как ожидалось, должен был прийти на смену «старой» теории квантов , а точнее, на смену тому разрозненному набору противоречивых идей, появившихся между 1900 и 1924 гг. в результате попыток объяснить квантовую дискретность (существование этой дискретности становилось все более очевидным из анализа различных физических явлений). Открытие, положившее начало теории квантов, – явная структура излучения черного тела – было сделано здесь же, в Берлине, благодаря исключительно точным измерениям Отто Люммера, Эрнста Принсгейма, Генриха Рубенса и Фердинанда Курльбаума, а также благодаря теоретическому «жесту отчаяния» Макса Планка. Но, конечно, больше всего показывали необходимость глубокого пересмотра физических основ ряд посвященных квантам работ Эйнштейна, выпущенных в период между 1905 г. и декабрем 1924 г. К тому же начиная с 1913 г. смелые теории Нильса Бора ясно говорили о том, как можно применять квантовые идеи в атомной физике.
Новый квантовый формализм, о котором рассказывал Гейзенберг, возник из идей Бора относительно структуры атомов и некоторых концепций, предложенных Эйнштейном в 1916 г. в связи с взаимодействием между атомом и электромагнитным излучением. Среди прочего Эйнштейн ввел коэффициенты A , измеряющие вероятность (в единицу времени), с которой атом, изначально находящийся в заданном (квантовом) «состоянии», может совершить «квантовый переход» в другое «состояние» с более низкой энергией с испусканием в произвольный момент времени и в произвольном направлении кванта света {136}. В исследование физики квантовых переходов Гейзенберга вовлекли его научный руководитель в Мюнхене Арнольд Зоммерфельд, а затем Макс Борн в Геттингене. В октябре 1923 г., после защиты диссертации в возрасте 22 лет, он стал ассистентом Борна и в 1923 и 1924 гг. работал под его руководством, изучая основные идеи и методы. В частности, он освоил использование новых коэффициентов a наряду с эйнштейновскими коэффициентами А , связанными с квантовыми переходами между двумя состояниями атома. Грубо говоря, новые коэффициенты а , называемые «амплитудами квантовых переходов» {137}, были таковы, что их квадраты равнялись эйнштейновским коэффициентам А .
Основная идея, которая легла в основу новой квантовой теории, пришла Гейзенбергу в начале июня 1925 г., когда он поправлялся после обострения сенной лихорадки, пребывая на острове Гельголанд на севере Германии. Идея состояла в замене обычного понятия непрерывной траектории, описывающей возможное движение электрона {138}в атоме, набором амплитуд а , связанных с переходами между возможными квантовыми состояниями атома. Каждая амплитуда перехода определяется двумя числами: числом, фиксирующим начальное состояние энергии из дискретного набора возможных квантовых состояний атома, и числом, фиксирующим конечное состояние. Полный набор амплитуд, таким образом, аналогичен шахматной доске или таблице умножения {139}, каждая элементарная ячейка которой задается двумя числами: координатами по «горизонтали» и по «вертикали».
Пока Гейзенберг объяснял мотивы, которые привели его к идее замены описания посредством непрерывных траекторий электрона в атоме на такие таблицы амплитуд переходов, он с беспокойством поглядывал в сторону Эйнштейна, пытаясь понять его реакцию на эти «колдовские таблицы умножения» {140}. Хотя ему и не удалось убедить Эйнштейна, его явно удалось заинтересовать, в особенности когда в конце выступления Гейзенберг заметил, что новые «правила умножения» для таблиц амплитуд, введенных им и развитых совместно с Максом Борном и Паскуалем Йорданом, позволили воспроизвести результат Эйнштейна, говоривший, что флуктуации энергии излучения, заключенного в некотором подобъеме, состоят из двух отдельных членов: первый связан с волновым характером излучения, а второй – с его корпускулярным характером {141}. Этот результат, заключил Гейзенберг, показывает, что новый квантовый формализм способен описывать одновременно как волновые, так и корпускулярный аспекты непрерывных полей (таких как электромагнитное поле).
После семинара Эйнштейн подошел поздравить Гейзенберга с его выдающимися результатами и пригласил составить ему компанию на пути домой, чтобы подробнее обсудить нововведения, лежащие в основе нового формализма. По возвращении домой Эйнштейн попросил его еще раз уточнить физическую мотивацию, ведущую к идее замены непрерывных траекторий бесконечной таблицей амплитуд переходов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу