Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

Здесь есть возможность читать онлайн «Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Альпина нон-фикшн, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир по Эйнштейну. От теории относительности до теории струн: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир по Эйнштейну. От теории относительности до теории струн»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как зарождалась теория относительности? Как повлияли революционные идеи Эйнштейна на представления о пространстве и времени, на науку и технику? Каково их место и значение в сегодняшней науке? Книга дает читателю возможность проникнуть в мир Эйнштейна, разделить те особые моменты, когда ему удавалось приподнимать краешек большой завесы, постигая скрытые механизмы Вселенной. Автор шаг за шагом скрупулезно, но занимательно и доступно рассказывает об истоках и формировании идей Эйнштейна, показывает их борьбу с устоявшимися представлениями, непростой путь внедрения этих идей в головы физиков и философов и значение для нашего времени.

Мир по Эйнштейну. От теории относительности до теории струн — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир по Эйнштейну. От теории относительности до теории струн», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В ноябре 1906 г. Эйнштейн понял, что идея квантования энергии колебаний механического осциллятора, которую он предложил в марте, служит ключом к решению указанной проблемы. Основная физическая причина состояла в следующем. Согласно Больцману, теплота твердого тела представлялась как энергия колебаний его атомов около положения равновесия. Точный расчет, выполненный Больцманом, предполагал, что эта колебательная энергия может непрерывно меняться от нуля до бесконечности. Из этого он заключал, что энергия вибрации при некоторой температуре T должна быть пропорциональна абсолютной величине T . Эйнштейн воспроизвел те же расчеты, но наложил дополнительное требование – энергия колебания каждого атома, осциллирующего с частотой f , должна принимать только квантованные значения 0, hf , 2 hf , 3 hf… Тогда он обнаружил, что удельная теплоемкость, равная нулю при очень низких температурах, постепенно возрастает и в конечном счете принимает значение, предсказанное Больцманом, в тот момент, когда энергия теплового движения атомов становится значительно больше чем E = hf. Интуитивно можно понять этот результат Эйнштейна, представляя теплоту окружающего воздуха как силу воздействия, а каждый атом – ребенком на качелях. Если амплитуда колебаний качелей не может непрерывно возрастать от нуля, а может лишь «перепрыгивать» с нулевой амплитуды на первую ненулевую амплитуду «возбуждения», затем на вторую, еще более высокую, и т. д., то слишком слабая сила воздействия будет недостаточна, чтобы совершить первый перескок, и ребенок останется в самом нижнем энергетическом состоянии, т. е. с нулевой энергией возбуждения {123}.

Затем Эйнштейн сравнил свои предположения с экспериментальными результатами Вебера и др. и обнаружил, что простая математическая формула, которую он вывел для удельной теплоемкости твердого тела, прекрасно описывала экспериментальные данные {124}. Тот факт, что алмаз ведет себя по-особому при обычных температурах, исходя из квантовых рассуждений, объясняется просто тем, что алмаз обладает высокой твердостью. Дорогие читатели, я надеюсь, что отныне, прикоснувшись к драгоценному камню и почувствовав, сколько тепла нужно для его нагрева, вы будете вспоминать, что это является повседневным подтверждением предложенной Эйнштейном в 1906 г. идеи о квантовании колебательной энергии всех материальных осцилляторов!

Идея, ведущая к лазеру

С 1905 по 1911 г. Эйнштейну удавалось весьма плодотворно совмещать несколько независимых направлений исследования: теорию относительности; беспорядочное (или броуновское) движение, связанное с теплотой; квантовые явления; а также обобщение теории относительности в условиях присутствия силы тяжести. Однако в 1911–1916 гг. он сосредоточивает почти всю свою энергию на том, что впоследствии получит название общей теории относительности. Хотя примерно в 1911 г. Эйнштейн уже понимал, что его принцип эквивалентности (см. главу 3), скорее всего, является ключом к абсолютно новому разделу физики, он так долго безуспешно пытался понять природу квантов, что был счастлив хоть на какое-то время отвлечься от исследований этого направления. Его разочарование в проблеме интерпретации явлений квантовой дискретности можно почувствовать, читая то, что он пишет Микеле Бессо в мае 1911 г.:

«Меня больше не интересует вопрос, существуют эти кванты на самом деле или нет. Я также не пытаюсь более понять их строение, ибо знаю уже, что мой мозг не в состоянии двигаться в этом направлении. Но я тем не менее пытаюсь внимательно исследовать все возможные последствия этого явления, чтобы понять, каково поле применения концепции квантов».

Основная проблема Эйнштейна и всех тех, кого интересовали квантовые явления, заключалась в серьезном логическом противоречии между разными предположениями, которые требовалось принять для объяснения всех наблюдаемых фактов. Например, эксперименты по интерференции света объяснялись посредством волнового описания, тогда как фотоэлектрический эффект благодаря Эйнштейну можно было понять, предполагая, что свет – это совокупность почти независимых корпускул. Можно было бы наивно надеяться (как надеялись Планк и Лоренц), что свет «на самом деле» есть волна и что корпускулярные аспекты являются лишь какими-то артефактами, возникающими при взаимодействии света и материи. Но, используя связь между энтропией и вероятностью, Эйнштейн показал в 1909 г., что флуктуации энергии излучения черного тела в единице объема определяются суммой двух разных вкладов: один из них можно было понять, интерпретируя свет как случайную суперпозицию непрерывных волн, а другой можно было объяснить, только предполагая, что свет – это совокупность независимых локализованных частиц. Затем Эйнштейн писал:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн»

Представляем Вашему вниманию похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Юрий Брайдер
Отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн»

Обсуждение, отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x