Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

Здесь есть возможность читать онлайн «Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Альпина нон-фикшн, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир по Эйнштейну. От теории относительности до теории струн: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир по Эйнштейну. От теории относительности до теории струн»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как зарождалась теория относительности? Как повлияли революционные идеи Эйнштейна на представления о пространстве и времени, на науку и технику? Каково их место и значение в сегодняшней науке? Книга дает читателю возможность проникнуть в мир Эйнштейна, разделить те особые моменты, когда ему удавалось приподнимать краешек большой завесы, постигая скрытые механизмы Вселенной. Автор шаг за шагом скрупулезно, но занимательно и доступно рассказывает об истоках и формировании идей Эйнштейна, показывает их борьбу с устоявшимися представлениями, непростой путь внедрения этих идей в головы физиков и философов и значение для нашего времени.

Мир по Эйнштейну. От теории относительности до теории струн — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир по Эйнштейну. От теории относительности до теории струн», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы разъяснить понятие энтропии и ее связь с идеей беспорядка, приведем один пример. Рассмотрим шахматную доску или квадрат восемь на восемь, содержащий, таким образом, 64 клетки. В начальный момент времени разместим определенное количество блох на одной из клеток этой шахматной доски и позволим блохам передвигаться свободно, т. е. прыгать в любых направлениях. Будем исходить из того, что края шахматной доски достаточно высоки и не позволяют блохам выпрыгнуть наружу. Спустя некоторое время, в течение которого блохи прыгали повсюду, они распределятся почти равномерно по всем клеткам шахматной доски. Это конечное состояние , очевидно, менее упорядоченное, нежели исходное состояние , в котором, как мы знаем, все блохи были собраны на одной клетке. Можно пойти дальше и количественно оценить увеличение беспорядка между начальным и конечным состояниями, для этого необходимо подсчитать число возможных конфигураций «системы блох». В конечном состоянии каждая блоха может находится с равной вероятностью на любой из 64 клеток шахматной доски. Таким образом, число возможных (равновероятных) состояний для одной блохи равно 64. Если у нас есть две блохи (предполагаемые независимыми и различимыми), то число возможных конфигураций для такой системы из двух блох равно 64 × 64, т. е. 64². Для трех блох мы получим 64³, и в общем случае можно заключить, что число возможных (равновероятных) конфигураций для системы из n блох будет равно 64 n . Заметим, поскольку в начальном состоянии все блохи находились на одной определенной клетке, то в этом состоянии мы имели одну-единственную и четко заданную конфигурацию системы блох.

В целом, основной вывод, который следует из рассмотренного примера, состоит в следующем. Если мы позволяем определенному количеству, скажем n , блох занимать площадь, в 64 раза большую площади, на которой они находились изначально, то число возможных конфигураций для такой системы умножается на 64 n . Если бы мы рассмотрели другое отношение площадей , скажем конечную площадь в 10 раз больше начальной, то число возможных конфигураций умножилось бы на 10 n . И если бы мы рассмотрели не блох на шахматной доске, а, скажем, мух, исходно ограниченных небольшим объемом и затем выпущенных летать по всему объему комнаты, то число возможных конфигураций нужно было бы умножить на фактор r n , где r – отношение конечного объема к начальному, а n – количество мух. Существенным моментом для дальнейшего обсуждения является то, что число n независимых элементов (или «корпускул») рассматриваемой системы появляется в виде отношения объемов, доступных для системы в конечном и начальном состояниях.

Энтропия и беспорядок

В физике, если имеется система, для которой указаны лишь некоторые глобальные макроскопические характеристики, такие как ее полная энергия и объем, в котором она находится, энтропией называется логарифм числа возможных микроскопических конфигураций системы (также называемых «микроскопическими состояниями»). Напомним, что логарифм числа, по существу, определяется как количество цифр его десятичного представления, стоящих перед запятой, минус один {115}. Например, логарифм 10 равен 1, логарифм 100 равен 2, логарифм одного миллиона равен 6. Отметим также, что логарифм единицы равен нулю. Другими словами, логарифм L заданного числа N удовлетворяет условию: N = 10 L . Понятие энтропии было введено в середине XIX в. Рудольфом Клаузиусом, когда он пытался лучше понять основополагающую работу Сади Карно. Клаузиус показал, как можно определить энтропию системы, исходя из знания ее термодинамических характеристик, и предложил в качестве аксиомы хорошо известный всем второй принцип термодинамики, согласно которому энтропия изолированной системы может только возрастать . [Напомним, что первый принцип термодинамики гласит, что энергия сохраняется .] Несколько лет спустя венский физик Людвиг Больцман понял, что второй закон термодинамики имеет под собой статистические основания {116}и что энтропия системы должна быть пропорциональна логарифму числа возможных микроскопических состояний {117}. Это позволило осознать второй закон термодинамики как простое выражение естественной тенденции изолированных систем стремиться к беспорядку. Примером может служить рассмотренная выше система блох, которая из начального «упорядоченного» состояния спонтанно развивается, последовательно занимая всевозможные доступные состояния, и, таким образом, большую часть времени находится в некотором обобщенном состоянии, утратив свой «первоначальный порядок».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн»

Представляем Вашему вниманию похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Юрий Брайдер
Отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн»

Обсуждение, отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x