Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

Здесь есть возможность читать онлайн «Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Альпина нон-фикшн, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир по Эйнштейну. От теории относительности до теории струн: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир по Эйнштейну. От теории относительности до теории струн»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как зарождалась теория относительности? Как повлияли революционные идеи Эйнштейна на представления о пространстве и времени, на науку и технику? Каково их место и значение в сегодняшней науке? Книга дает читателю возможность проникнуть в мир Эйнштейна, разделить те особые моменты, когда ему удавалось приподнимать краешек большой завесы, постигая скрытые механизмы Вселенной. Автор шаг за шагом скрупулезно, но занимательно и доступно рассказывает об истоках и формировании идей Эйнштейна, показывает их борьбу с устоявшимися представлениями, непростой путь внедрения этих идей в головы физиков и философов и значение для нашего времени.

Мир по Эйнштейну. От теории относительности до теории струн — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир по Эйнштейну. От теории относительности до теории струн», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В то же время если перейти определенный порог (так называемый «предел упругости»), другими словами, если приложить слишком большое напряжение, то в общем случае мы покинем область упругости для данной структуры. И тогда мы переходим в область «пластичности», где структура приобретает постоянную деформацию, остающуюся после того, как напряжение перестает действовать, и затем в область «разрыва», где структура рвется.

Чтобы немного развить интуицию, а также приблизиться к нашей модели «пространственно-временного желе», рассмотрим в качестве упругой структуры трехмерную среду, имеющую место в случае заливной телятины. То, что мы собираемся сказать, в равной степени относится и к более жесткой среде, такой как металл, однако жесткость металла настолько велика, что интуитивно сложно представить его в качестве упругой структуры. Поэтому мы рассматриваем кусок (однородного) желе. Деформируем этот блок, прикладывая давление, или напряжение, к его краям. Это создает напряженное состояние внутри куска. Такое напряженное состояние описывается (в механике сплошных сред) математическим объектом, называемым тензором напряжений . Этот тензор, который мы обозначим через T(от английского слова tension) {72}, позволяет вычислять силы внешнего воздействия, действующие на поверхность выделенного элемента объема внутри среды. В газообразной среде Tопределяется давлением газа.

Нам остается описать, как определяется деформация блока желе D. Когда деформация Dмала, она определяется как разница между геометрической структурой деформированного и исходного недеформированного блока. Каким же образом можно измерить геометрическую структуру сплошной среды? Точно так же, как мы поступали выше, анализируя геометрическую структуру пространства при помощи визуализации. Опишем сначала визуализацию геометрии недеформированного блока желе (рассматриваемого в обычном евклидовом пространстве), представляя вокруг каждой точки блока геометрическое место точек, расположенных от данной на единичном расстоянии. Это дает регулярную сеть сфер внутри блока. Теперь мы деформируем блок, т. е. заставляем желе двигаться произвольным, но непрерывным образом (так же как деформируется содержимое тюбика зубной пасты, когда его сжимают). Это непрерывное перемещение деформации желе будет деформировать сеть сфер. Сначала центр каждой сферы смещается. Однако такой эффект сам по себе не связан с напряжением в среде, так как можно было бы, например, переместить весь блок желе вправо на один сантиметр, двигая его целиком и не создавая никакой нагрузки внутри блока. С точки зрения упругости важно, таким образом, измерить, как деформируется каждая сфера, когда она следует за движением желатина вокруг себя. Если рассматривать, как мы делаем здесь, небольшие смещения, то можно обнаружить, что сфера деформируется в «эллипсоид», т. е. в своего рода мяч для регби. Поэтому мы будем называть деформацией Dматематический объект, который измеряет разницу между эллипсоидом и сферой. Видно, что этот объект имеет ту же математическую природу, что и объект, описывающий наличие напряжений в среде, и, таким образом, является тензором, который называют тензором деформации {73}. Наконец, закон упругости для однородной и изотропной сплошной среды, такой как блок желе, можно получить, если записать наиболее общее линейное соотношение, которое может существовать между двумя математическими объектами одного и того же типа (тензором деформации Dи тензором напряжений T) {74}: D= κ T.

Немного расширив понимание упругости непрерывной среды (в смысле обычной механики), мы можем вернуться к главной цели этой главы: попытке понять общую теорию относительности как теорию упругости пространства-времени. Для этого необходимо обсудить два вопроса: (i) что является аналогом D, т. е. какой математический объект описывает «деформацию» пространства-времени по отношению к «однородному» пространству-времени Минковского; и (ii) что является аналогом Tили, другими словами, какой математический объект описывает причину (или источник ) пространственно-временной деформации, т. е. то, без чего пространство-время оставалось бы пространством-временем Минковского. Ответ на вопрос (ii) довольно быстро был получен Эйнштейном путем следующего рассуждения.

Во-первых, Эйнштейн предложил идентифицировать метрический тензор g, описывающий пространственно-временную хроногеометрию, с гравитационным полем. Этот вывод следовал из анализа принципа эквивалентности , открытого Эйнштейном в ноябре 1907 г. Рассмотрим, например, простой случай пространства-времени Минковского. Если наблюдатель исследует пространство-время Минковского, оставаясь при этом в «инерционной» системе отсчета, т. е. в системе, движущейся без ускорения, он не будет наблюдать гравитационное поле (свободные частицы не будут «падать», но будут оставаться в покое или же двигаться с постоянной скоростью), и метрический тензор g, описывающий пространственно-временную хроногеометрию будет тривиальным (т. е. будет задаваться постоянными коэффициентами) {75}. В то же время наблюдатель, находящийся в ускоряющемся лифте, т. е. использующий координаты, нелинейно связанные с обычными координатами специальной теории относительности, наблюдает два взаимосвязанных явления: (i) метрический тензор gприобретает более сложное выражение с коэффициентами, которые изменяются от одной точки к другой, и (ii) в ускоряющемся лифте возникает кажущееся гравитационное поле, т. е. частицы в нем как будто падают с ускорением. Это ускорение кажущегося притяжения напрямую связано с тем, что коэффициенты gменяются от одной точки к другой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн»

Представляем Вашему вниманию похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Юрий Брайдер
Отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн»

Обсуждение, отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x