Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

Здесь есть возможность читать онлайн «Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Альпина нон-фикшн, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир по Эйнштейну. От теории относительности до теории струн: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир по Эйнштейну. От теории относительности до теории струн»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как зарождалась теория относительности? Как повлияли революционные идеи Эйнштейна на представления о пространстве и времени, на науку и технику? Каково их место и значение в сегодняшней науке? Книга дает читателю возможность проникнуть в мир Эйнштейна, разделить те особые моменты, когда ему удавалось приподнимать краешек большой завесы, постигая скрытые механизмы Вселенной. Автор шаг за шагом скрупулезно, но занимательно и доступно рассказывает об истоках и формировании идей Эйнштейна, показывает их борьбу с устоявшимися представлениями, непростой путь внедрения этих идей в головы физиков и философов и значение для нашего времени.

Мир по Эйнштейну. От теории относительности до теории струн — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир по Эйнштейну. От теории относительности до теории струн», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На плоской поверхности, например на лежащем на столе листе бумаги, можно легко определить местоположение точки с помощью обычной прямоугольной сетки, какая используется в школьных тетрадках или на миллиметровой бумаге. Такую регулярную сетку уже невозможно реализовать на поверхности, имеющей всевозможные выпуклости и впадины. Чтобы зафиксировать любую точку на искривленной поверхности, мы, таким образом, используем два параметра, скажем x и y , которые больше не имеют простого смысла длины и ширины. Например, на поверхности Земли в качестве «первой координаты» x можно использовать долготу, а в качестве «второй координаты» y – широту. Следует отметить, что такие координаты можно использовать, даже когда земную поверхность невозможно аппроксимировать сферой: например, на возвышенности или в низине. При этом нет необходимости вводить третью координату (скажем, высоту над уровнем моря), поскольку двух первых координат (долготы и широты) будет достаточно, чтобы определить положение на Земле, а высота будет определяться некоторой функцией долготы и широты. Отсюда легко видеть, что если использовать сетку, определяемую долготой и широтой, на небольшой части поверхности Земли на склоне горы или ущелья, то эта сетка будет представлять собой деформацию привычной сетки из школьной тетрадки в клетку: поверхность по-прежнему будет разбиваться на ячейки двумя семействами линий, но каждая ячейка будет не квадратом, а чем-то вроде параллелограмма, точнее, ее стороны просто не будут равны друг другу и перестанут пересекаться под прямым углом.

Итак локально можно сопоставить каждый небольшой фрагмент получившегося - фото 8

Итак, локально можно сопоставить каждый небольшой фрагмент получившегося разбиения на ячейки с обычным разбиением на параллелограммы, сделанном на касательной плоскости. Обобщение теоремы Пифагора применительно к непрямоугольным треугольникам говорит нам, что квадрат расстояния между двумя узлами такой (плоской) сетки дается суммой квадратов разностей координат между двумя узлами и их удвоенным произведением. Чтобы определить квадрат расстояния между близкими точками вообще любой искривленной поверхности, точки которой фиксируются двумя координатами x и y , необходимо, таким образом, задать в каждой точке три величины: коэффициент перед квадратом dx ² разности dx между первыми координатами двух точек, коэффициент перед квадратом dy ² разности dy между вторыми координатами и коэффициент перед удвоенным произведением 2 dxdy . [Мы рассматриваем математический предел, в котором точки бесконечно близки, отсюда символ d , обозначающий бесконечно малую разность.] Эти три коэффициента определяют геометрию (geometry) рассматриваемой поверхности и по этой причине обозначаются соответственно как g xx, g yy и g xy , где буква g напоминает нам, что речь идет о геометрии.

Во времена обучения в Цюрихском политехническом Эйнштейн высоко ценил курс Карла Фридриха Гёйзера, посвященный «инфинитезимальной геометрии» поверхностей. Гёйзер читал лекции по теории, разработанной знаменитым математиком Карлом Фридрихом Гауссом и фактически изучающей тот самый квадрат расстояния между бесконечно близкими точками, про который мы только что говорили. В связи с этим в 1912 г. Эйнштейн вспомнил, что геометрия «деформированной» (или неплоской) поверхности определяется с помощью трех величин g xx, g yy, g xy , заданных в каждой точке поверхности. Этот набор данных, определяющий для каждой точки поверхности значения трех величин g xx, g yy, g xy , называется «геометрическим тензором», а точнее, «метрическим тензором» g . Эйнштейн понял, что ему требуется обобщение этого понятия на случай, когда (двумерная) поверхность заменяется на (четырехмерное) пространство-время. Математик Бернхард Риман, студент Гаусса, уже обобщил теорию Гаусса для деформированных пространств произвольных размерностей. Однако Риман рассматривал исключительно случай пространств, которые локально, т. е. в окрестности каждой точки, напоминают обычное евклидово пространство. Другими словами, он изучал пространства, в которых геометрическое место точек, разделенных с данной центральной точкой малым значением квадрата расстояния ε², имеет форму деформированной (гипер)сферы, т. е. представляет своего рода «мяч для регби» {68}. Эйнштейн понял, что ему требуется обобщить теорию Римана на случай, когда геометрическое место точек, разделенных с данной центральной точкой малым (положительным) значением квадрата интервала ε², имеет форму деформированных песочных часов {69}.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн»

Представляем Вашему вниманию похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Юрий Брайдер
Отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн»

Обсуждение, отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x