Зависимость угла преломления от цвета имела одно неприятное свойство: стеклянные линзы телескопов, которые были у Галилея, Кеплера и Гюйгенса, фокусировали различные цвета белого по-разному, искажая изображения далеких объектов. Чтобы избежать этой хроматической аберрации, Ньютон в 1669 г. изобрел телескоп, где свет первоначально фокусировался с помощью вогнутого зеркала, а не с помощью линзы (затем плоское зеркало направляло лучи из трубы телескопа в окуляр, состоящий из линзы, из-за чего не от всей хроматической аберрации удалось избавиться). С помощью телескопа-рефлектора длиной всего 15 см Ньютону удалось добиться увеличения в 40 раз. Все основные современные астрономические оптические телескопы – это телескопы-рефлекторы, потомки того, который изобрел Ньютон. Когда я побывал в сегодняшней штаб-квартире Лондонского королевского общества в Карлтон-Хаус-Террас, в качестве поощрения меня провели в подвальный этаж, чтобы взглянуть на маленький телескоп Ньютона, второй из тех, что он сделал.
В 1671 г. Генри Олденбург, секретарь и духовный лидер Королевского общества, предложил Ньютону опубликовать описание своего телескопа. Ньютон поместил письмо с этим описанием и свою работу о цвете в «Философские записки королевского общества» в начале 1672 г. После этого разгорелась полемика по поводу значимости и оригинальности работы Ньютона, в которой особое участие принимал Гук, бывший с 1662 г. куратором экспериментов при Королевском обществе и с 1664 г. читавший лекции по механике, профинансированные сэром Джоном Кутлером (так называемые «кутлеровские лекции»). Гук не был слабым оппонентом. Он сам внес значительный вклад в развитие астрономии, микроскопии, часового механизма, механики и градостроительства. Гук заявлял, что сам проводил такие же эксперименты со светом, как и Ньютон, и что они не доказывают ничего – призма просто добавляет цвета́ к белому свету.
В 1675 г. в Лондоне Ньютон прочитал лекцию по своей теории света. Он предполагал, что свет, как и любое вещество, состоит из множества маленьких частиц, что противоречило точке зрения, которой в то время придерживались Гук и Гюйгенс (о том, что свет – это волна). Это был один из тех случаев, когда научное чутье Ньютона подводило его. Существовало множество наблюдений, доказывающих волновую природу света. Действительно, в современной квантовой механике свет описывается как совокупность не имеющих массы частиц, которые называются фотонами, но в свете, с которым мы сталкиваемся в повседневной жизни, количество фотонов огромно, и вследствие этого свет ведет себя как волна.
В своей работе «Трактат о свете», вышедшей в 1678 г., Гюйгенс описал свет как волну возмущений в среде, эфире, состоящем из огромного количества мельчайших материальных частиц, располагающихся в тесном соседстве. Как и волна в океане в области больших глубин не перемещает воду вдоль поверхности океана, а лишь вызывает ее вертикальные колебания, так и свет, по теории Гюйгенса, – это волна возмущений среди частиц эфира, которая движется вдоль луча света, но сами частицы при этом вдоль луча не перемещаются. Каждая затронутая частица становится новым источником возмущения, что создает общую амплитуду волны. Конечно, после работ Джеймса Клерка Максвелла в XIX в. мы знаем (даже если отвлечься от квантовых эффектов), что Гюйгенс был прав только наполовину: свет – это действительно волна, но волна возмущений в электрическом и магнитном поле, а не волна возмущений материальных частиц.
Используя волновую теорию света, Гюйгенс сумел вывести, что свет в однородной среде (или в пустоте) ведет себя так, как будто двигается по прямым линиям, то есть волновое возмущение частиц как будто слагается из колебаний частиц только вдоль этих линий. Он по-новому объяснил правило равенства углов падения и отражения и закон преломления Снеллиуса, не используя априорное предположение Ферма о том, что свет совершает свой путь за наикратчайшее время (см. техническое замечание 30). По теории преломления Гюйгенса луч света преломляется, проходя под непрямым углом границу между двумя средами, скорость света в которых отличается, примерно так же, как и отряд солдат изменяет направление своего движения вслед за передовым флангом строя, переходя с хорошей дороги на болотистую местность, где его скорость снижается.
Немного отклоняясь от темы, скажу, что по волновой теории Гюйгенса, в отличие от Декарта, свет движется с конечной скоростью. Гюйгенс утверждал, что эффекты, вызванные этой конечной скоростью, просто трудно заметить, потому что свет движется очень быстро. Если бы, к примеру, свету был необходим час, чтобы преодолеть расстояние от Земли до Луны, то во время лунного затмения Луна располагалась бы не непосредственно напротив Солнца, а отставала бы от него примерно на 33°. Поскольку такого отставания мы не наблюдаем, Гюйгенс сделал вывод, что скорость света должна быть, по крайней мере, в 100 000 раз быстрее скорости звука. Это предположение недалеко от истины – на самом деле соотношение этих скоростей составляет примерно миллион раз.
Читать дальше
Конец ознакомительного отрывка
Купить книгу