Jose Santonja - Физика учит новый язык. Лейбниц. Анализ бесконечно малых.

Здесь есть возможность читать онлайн «Jose Santonja - Физика учит новый язык. Лейбниц. Анализ бесконечно малых.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика учит новый язык. Лейбниц. Анализ бесконечно малых.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика учит новый язык. Лейбниц. Анализ бесконечно малых.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Готфрид Вильгельм Лейбниц — один из самых гениальных ученых в истории науки. Он жил на рубеже XVII и XVIII веков, в эпоху больших социальных, политических и научных перемен. Его влияние распространяется практически на все области знания: физику, философию, историю, юриспруденцию... Но главный вклад Лейбница, без сомнения, был сделан в математику: кроме двоичного исчисления и одного из первых калькуляторов в истории он создал, независимо от Ньютона, самый мощный инструмент математического описания физического мира — анализ бесконечно малых.

Физика учит новый язык. Лейбниц. Анализ бесконечно малых. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика учит новый язык. Лейбниц. Анализ бесконечно малых.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Лейбниц во многих инстанциях выступал за то, чтобы добиться тесной связи между Европой и Китаем через Россию.

Так как у него были хорошие отношения с Москвой, он надеялся осуществить свое намерение. Ученый даже настаивал в Берлинской академии на подготовке протестантской миссии в Китае. По его мнению, если бы удалось обратить императора, это был бы большой успех, а католическая миссия не сильно продвинулась в этом деле.

Лейбниц опубликовал свою основную работу о Китае за несколько месяцев до смерти, назвав ее Discours sur la theologie naturelle des chinois ("Сочинение о естественной теологии китайцев"). В ней он утверждал, что древние китайцы создали естественную религию, совместимую с христианством. Он указал на аспекты древнекитайской философии, которые были схожи с его собственной. В последней части Лейбниц излагал свою двоичную систему и ее связь с "И Цзин". Он также указывал на важные моменты, которые делали китайцев цивилизованным народом, не уступающим европейцам: их древнейшие исторические хроники, в чем Европа явно отставала; их значительные достижения в практической философии (образовании, гражданских делах, личных отношениях) и в науках, которые превзошла только европейская наука.

"И ЦЗИН" И ДВОИЧНАЯ СИСТЕМА

"И Цзин", или "Книга перемен",— это древнекитайская книга для гадания, с помощью которой можно узнать будущее, связанное с семьей и другими аспектами жизни. В ней развивается даосистская философия инь и ян. Она была написана мифическим императором Фу Си около 2400 года до н. э. и дополнена в последующие эпохи, например Конфуцием в 500 году до н. э.

Толкование книги основывается на ряде символов (гексаграмм), каждый из которых имеет разное значение в зависимости от контекста. Они образованы непрерывными и пунктирными линиями, сгруппированными в триграммы. Каждая гексаграмма состоит из сочетания двух триграмм в разных вариантах. Восемь триграмм показаны на следующем рисунке.

Если соединить две триграммы всеми возможными способами получаются 64 - фото 52

Если соединить две триграммы всеми возможными способами, получаются 64 возможные гексаграммы, образованные шестью линиями. Хотя Буве думал, что это было создание самого Фу Си, именно китайский философ Шао Юн (1011-1077) придал гексаграммам вид, напоминающий двоичную систему На следующем рисунке мы можем увидеть некоторые из гексаграмм. Хотя китайцы не знали нуля, если рассматривать пунктирную линию как нуль, а непрерывную — как единицу, мы можем увидеть первые зашифрованные двоичные числа.

Так можно обозначить двоичные числа от 0 до 63 Достаточно назначить - фото 53

Так можно обозначить двоичные числа от 0 до 63. Достаточно назначить гексаграмме двоичный код и превратить его в десятичное число. Например, гексаграмма на следующем рисунке обозначала бы число:

101001 (2= 1·2 5+ 0·2 4+1·2 3+ 0·2 2+ 0·2 1+ 1·2° = 32 + 8+1 =41.

МАТЕМАТИЧЕСКАЯ ЗАПИСЬ Обычно мы воспринимаем вещи которые знаем с детства - фото 54
МАТЕМАТИЧЕСКАЯ ЗАПИСЬ

Обычно мы воспринимаем вещи, которые знаем с детства, так, словно они были всегда. Кажется, что интернет, мобильные телефоны, компьютеры и телевидение существуют уже давным- давно, хотя многие из нас жили еще в те времена, когда их еще не изобрели. С символами, используемыми в науке, происходит то же самое. Мы привыкли писать и совершать операции с числами и функциями, используя символы, которые, кажется, были всегда. При этом, например, арабские цифры, сопровождающие нас в повседневной жизни, более "новые" для нашей культуры, нежели римские.

В XVI и XVII веках одной из сложностей для обмена результатами исследований или понимания разработок других ученых было именно отсутствие четкой и унифицированной записи.

Символы + и - для операций сложения и вычитания начали применяться только в XV веке в Германии. После этого еще довольно долго в некоторых странах, например в Испании, продолжали работать с символами ~р и ~т (начальные от plus и minus). Использование знака х для умножения приписывается Отреду, изобретателю логарифмической линейки.

Черта для обозначения деления считается арабским изобретением, а Фибоначчи (ок. 1170 — ок. 1250) распространил его по Европе. Любопытно, что только в XIX веке английский математик Огастес де Морган (1806-1871) начал использовать вариант α/b, исходя из интересов книгопечатания, поскольку в изданиях выражение

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика учит новый язык. Лейбниц. Анализ бесконечно малых.»

Представляем Вашему вниманию похожие книги на «Физика учит новый язык. Лейбниц. Анализ бесконечно малых.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика учит новый язык. Лейбниц. Анализ бесконечно малых.»

Обсуждение, отзывы о книге «Физика учит новый язык. Лейбниц. Анализ бесконечно малых.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x