= m 2v 2/t, или m 1a 1= m 2a 2. С учетом (4.8) получаем:
F 1= F 2(9.3). Уравнение (9.3) принято называть третьим законом Ньютона. Так как он получен из закона сохранения импульса, его следует считать независимым от второго закона Ньютона. Это справедливо, так как второй закон был выведен из закона сохранения энергии. Законы Ньютона составляют основу классической механики.
Принято считать, что классическая механика стоит, как на трёх китах, на трёх законах Ньютона. Это не совсем так. На самом деле механика основана на четырёх законах Ньютона. Рассмотрим их подробнее.
Свой первый закон (закон инерции) Ньютон записал так: «Если на тело не действуют другие тела, то скорость данного тела не изменяется». Такое тело ещё называют «свободным». Заметим, свободным тело может быть только в глубоком космосе, где притяжение далеких звёзд практически отсутствует. В наши дни первый закон Ньютона формулируют по-другому: «Существуют тела отсчёта, относительно которых свободное тело перемещается с постоянной скоростью». Такое утверждение называется постулатом. Почему закон инерции понадобилось преобразовывать в постулат? Причины две. Во-первых, мы не никогда не сможем избавиться от притяжения Земли, хотя и верим, что за пределами Солнечной системы свободное тело будет двигаться по инерции миллионы лет с неизменной скоростью. Во-вторых, для измерения скорости необходимо знать длину пути и время в пути. Если время можно измерить секундомером, то для измерения длины пути необходимо иметь нулевую отметку. Тело, на котором сделана нулевая отметка, называют телом отсчёта. Из нулевой отметки проводят три воображаемые взаимно-перпендикулярные линии и размечают их на метры. Так получается виртуальная трехмерная координатная сетка.
Тело отсчета вместе с привязанной системой координат называют системой отсчёта. С учётом системы координат смысл постулата более ясен. Надо понимать, что в природе существуют системы отсчёта, относительно которых выполняется закон инерции – первый закон Ньютона. Такие системы принято называть инерциальными. Запомнить легко: в инерциальной системе выполняется закон инерции. Отсюда вытекает правило: если в некоторой системе отсчёта нарушается закон инерции (т. е. тело изменяет скорость без причины), значит, данная система отсчета не является инерциальной. Возникает вопрос, как выбирать инерциальную систему? Очевидно, если свободное тело движется с постоянной скоростью, значит, инерциальная система сама тоже должна двигаться с постоянной скоростью. Если тело движется с ускорением, его нельзя рассматривать в качестве инерциальной системы отсчёта.
Свой второй закон Ньютон записывал так: a =F/m (10.1). Он говорил, что ускорение тела пропорционально силе и обратно пропорционально массе. Отсюда следует, что если известна сила, ускорение тела вычислить легко. Но как измерить силу? Мы до сих пор не совсем понимаем, что такое сила (дать определение, это ещё не значит – понять), а уж придумать прибор для её измерения – вовсе непросто. Гораздо легче измерить ускорение: есть секундомер, есть рулетка. Поэтому в наши дни второй закон записывают так: F = ma (10.2). Второе уравнение равносильно первому, но применять его гораздо удобнее. Считается, что второй закон открыт опытным путем. Мы вывели уравнение (10.1) из закона сохранения энергии, который, в общем, тоже установлен на основании опытов. Заметим, что уравнение второго закона Ньютона верно т олькоотносительно инерциальной системы отсчёта. Если относительно некоторой системы отсчёта тело имеет ускорение без видимых причин, значит, данная система не является инерциальной.
§ 11. Другие два закона Ньютона
Ранее мы вывели закон сохранения импульса: P 1= P 2(11.1). Из уравнения (11.1) легко получается третий закон Ньютона: F 1= F 2(11.2). В стандартном учебнике третий закон читается так: сила действия F 1равна силе противодействия F 2. Понять это не просто, поэтому в учебнике сразу следует картинка с тележкой, которую толкает рабочий. На этом учебном примере нам пытаются объяснить, чем сила противодействия тележки отличается от силы действия рабочего и почему она не может её уравновесить, хотя и равна ей. Используются термины, разъяснения, но понимания так и не наступает. Попробуем разобраться, в чём тут дело.
В нашем энергетическом подходе третий закон Ньютона вытекает из закона сохранения импульса (10.3). Это уравнение получено опытным путем. Оно практично, понятно, его ничем не опровергнуть. Нам не надо читать уравнение (11.1) в виде: «импульс действия равен импульсу противодействия». Это звучит бессмысленно. Мы знаем, что импульс сохраняется, как сохраняется энергия. И всё. Сложности не нужны, если они не помогают понять суть вещей.
Читать дальше
Конец ознакомительного отрывка
Купить книгу