Разделим радиус Земли на радиус Луны и возведем в квадрат: 6 380 км / 1 740 км = 3.66; 3.66*3.66 = 13.4. Мы получили отношение квадратов расстояний до центров гравитации. Отношение масс Земли и Луны известно, оно равно 81. Разделим отношение масс на отношение квадратов радиусов: 81/13.4 = 6, что в точности равно отношению веса тела на Земле к весу того же тела на Луне. Это значит, что гравитация на Луне в шесть раз меньше гравитации на Земле, что и требовалось доказать. Следовательно, поле гравитации вокруг тела пропорционально массе тела и обратно пропорционально квадрату расстояния до центра тела: g = GM/R 2(6.1). Коэффициент G нужен, чтобы совпали размерности по обе стороны знака равенства. Из требований системы СИ следует, что размерность G равна: [G] = [L 3/MT 2]. Коэффициент G называется «постоянная гравитации». От её значения зависит время жизни звёзд, галактик, в общем, зависит всё. В нашей Вселенной величина постоянной гравитации равна: 6.67*10 -11м 3/кг*с 2.
Чтобы узнать, с какой силой притягивает к себе тело с массой М, умножим обе части (6.1) на массу m (масса второго тела), получим: mg = GMm/R 2(6.2). Слева получился вес второго тела Р, который равен силе притяжения: F = GMm/R 2(6.3).
Уравнение (6.3) известно как закон всемирного тяготения. Его тоже открыл Ньютон. С помощью уравнения (6.3) можно вычислить силу притяжения между любыми телами, если известны их массы и расстояние между их центрами. Покажем на учебном примере (задаче).
Задача: С какой силой притягиваются два танкера, стоящие борт о борт, если масса каждого из них равна 100 000 тонн, а ширина корпуса равна 32 метра? Решение: расстояние между центрами танкеров равно 32 м, значит, R 2 = 32*32 ~ 1000 м 2 . Подставляя в (6.3) получим:
F = 6.67*10 -11 *10 8 *10 8 /10 3 = 667. Ответ: танкеры притягиваются с силой 667 Н.
Нередко можно услышать фразу, что космонавты на орбите испытывают невесомость, потому что центробежная сила уравновешивает силу притяжения Земли. Согласиться с этим невозможно. Мы уже говорили, что взаимодействовать могут только тела. Сила – не материальное тело. Сила это математический объект, формула, которая существует только на бумаге. Компенсировать притяжение можно, только разместив «над» спутником другой центр притяжения, т. е. другую планету. В нашем случае, избавиться от притяжения Земли можно только полностью подчинившись ему, т. е. начать падать с высоты по направлению к центру Земли. Тот, кто падает, ничего не весит. Покажем на опыте, как возникает невесомость на орбите.
Представим, что на гору Эверест (h = 8 км) втащили пушку и выстрелили в горизонтальном направлении. Скорость снаряда пусть будет 1 км/с. Ускорение свободного падения на Землю примерно равно 10 м/с 2. Попробуем вычислить время t падения снаряда на землю. Путь снаряда h по вертикали равен 8 км. Если скорость была бы постоянна, то h = vt. В данном случае снаряд падает с ускорением g, значит, в конце падения скорость равна gt. Учитывая, что начальная скорость по вертикали была нулевая (пушка направлена строго по горизонтали), средняя скорость падения v c= (0+gt)/2= gt/2. Тогда путь h=v ct = gt 2/2 (7.1). Отсюда, время падения снаряда с высоты Эвереста равно t = √2h/g (7.2). Подставляя известные данные, получим t=√1600 = 40 (с). Значит, по горизонтали снаряд успеет пролететь 40 км, но затем всё равно упадет на землю. Мысленно увеличим исходные данные до планетарных масштабов. Представим гору высотой h = 320 км (высота орбиты спутника), а скорость снаряда увеличим до 8 км/с (первая космическая скорость). Время падения с такой высоты по формуле (7.2) равно 250 секунд. За это время снаряд улетит по горизонтали на 2000 км. Это расстояние сопоставимо с радиусом Земли, который равен 6400 км. Представим окружность с таким радиусом и проведём к ней отрезок касательной длиной 2000 км. Мы увидим, что конец отрезка отделяют от окружности Земли всё те же 320 км. Значит, через 250 секунд падения снаряд снова окажется на высоте 320 км над Землёй и всё повторится. Таким образом, спутник на орбите находится в состоянии падения, но никак не упадет, так как поверхность Земли из-за своей кривизны буквально уходит из-под ног космонавтов, которые «вечно» падают вместе со своей космической станцией, «наслаждаясь» состоянием невесомости.
Импульсом силы (или просто импульсом) называют произведение массы тела на его скорость: p = mv (8.1). Иногда вместо «импульс» говорят «количество движения» (мы уже говорили о традиции называть одну величину разными терминами). Возникает вопрос, зачем нужен импульс, если есть энергия? Дело в том, что многие задачи решаются проще при помощи теории, основанной на понятии импульса. Например, оружейникам надо знать скорость отдачи пушки в зависимости от скорости снаряда. Здесь возникает особая проблема. До выстрела скорости пушки и снаряда были равны нулю. После выстрела они разлетаются в разные стороны. Разумеется, полная энергия сохраняется, но как учесть энергию порохового заряда? Мы должны придумать какой-то другой закон, независимый от закона сохранения энергии. Рассмотрим конкретный случай.
Читать дальше
Конец ознакомительного отрывка
Купить книгу