Какая масса нам понадобилась бы для выполнения той же работы, будь у нас возможность применить теорию Эйнштейна и превратить эту массу в энергию? Эта масса должна быть эквивалентна энергии, разделенной на скорость света в квадрате, то есть 100 джоулей разделить на возведенные в квадрат 300 миллионов метров в секунду, что составляет около 0,000000000001 грамма, или, если словами, одна миллионная одной миллионной (то есть одна триллионная) доли одного грамма. Таким образом, нам достаточно было бы разрушать всего один микрограмм вещества каждую секунду, чтобы обеспечить электроэнергией целый город. В одном столетии 3 миллиарда секунд, значит, нам понадобилось бы три килограмма вещества для того, чтобы питать город электроэнергией на протяжении сотни лет. Одно можно сказать совершенно точно: масштаб энергетического потенциала, который заключен в материи, отличается от всего того, к чему мы привыкли, и способность высвобождать эту энергию позволила бы нам решить все энергетические проблемы планеты.
Позвольте, прежде чем двигаться дальше, высказать еще одно, последнее соображение. Заключенная в массе энергия кажется просто астрономической, если использовать ее здесь, на Земле. Существует большой соблазн объяснить это тем, что скорость света – очень большое число, но это означало бы упустить из виду самое главное. Дело, скорее, в том, что значение mv ² ÷ 2, достаточно мало по сравнению с mc ², поскольку скорость, с которой мы привыкли иметь дело, очень небольшая по сравнению с предельной космической скоростью. Причина того, что мы живем в мире малых энергий, в конечном счете связана с мощностью сил природы, в частности с относительной слабостью таких сил, как электромагнетизм и гравитация. Мы рассмотрим эту тему более подробно в главе 7, когда совершим путешествие в мир физики элементарных частиц.
Людям понадобилось почти полстолетия после открытий Эйнштейна, прежде чем они нашли способ извлекать из вещества значительное количество энергии массы; такое разрушение массы используется сейчас в атомных электростанциях. В разительном контрасте с этим природа применяет закон E = mc² миллиарды лет. Это поистине источник жизни, ведь без него наше солнце не горело бы и земля погрузилась бы в вечный мрак.
6. И какое нам до этого дело? Об атомах, мышеловках и энергии звезд
Знаменитое уравнение Эйнштейна заставило нас переосмыслить свои представления о массе. Мы поняли, что масса – это не только показатель количества вещества, содержащегося в чем-то, но и мера потенциальной энергии, которую содержит это вещество. Кроме того, мы пришли к выводу, что, если бы умели высвобождать эту энергию, нам удалось бы получить в свое распоряжение огромный источник энергии. В этой главе мы уделим немного времени изучению способов, посредством которых действительно можно высвободить энергию массы. Но прежде давайте более внимательно проанализируем наше новое уравнение – E = mc ² + ½ mv ².
Вспомните, что версия уравнения E = γ mc ² – это всего лишь приближение (хотя и достаточно хорошее) для скоростей, не превышающих 20 процентов от скорости света. Такая запись уравнения делает разделение энергии на энергию массы и кинетическую энергию более очевидным. Мы больше не будем напоминать вам, что это лишь приближенная формула. Напомним также, что мы можем построить вектор в пространстве-времени, длина которого в пространственном направлении представляет собой сохраняющуюся величину, что сводится к старому закону сохранения импульса для небольших по сравнению со скоростью света скоростей. Поскольку длина нового вектора импульса в пространстве-времени сохраняется, длина этого вектора во временн о м направлении также должна быть сохраняющейся величиной и равна она mc ² + ½ mv ². Мы знаем, что ½ mv ² – формула кинетической энергии (величины, давно известной ученым), поэтому определили эту сохраняющуюся величину как энергию. Важно то, что мы начали не с закона сохранения энергии. Он возник совершенно неожиданно, когда мы попытались найти пространственно-временн у ю версию закона сохранения импульса.
Представьте себе корзину заряженных мышеловок, в пружинах которых заключена энергия. Мы знаем, что сжатая пружина содержит энергию, так как приведение мышеловки в действие сопровождается громким хлопком (это энергия, высвобожденная в виде звука), а сама мышеловка может подскочить (при этом высвобождается кинетическая энергия). А теперь представьте, что в нашей корзине одна мышеловка срабатывает и приводит в действие все остальные. Когда мышеловки захлопываются, энергия пружин высвобождается, что создает настоящий грохот. Закон сохранения энергии гласит, что количество энергии до срабатывания мышеловок должно быть эквивалентно количеству высвободившейся энергии. Более того, так как мышеловки находились сначала в состоянии покоя, общее количество их энергии должно быть равным mc ², где m – общая масса корзины заряженных мышеловок. После срабатывания мы имеем захлопнувшиеся мышеловки и высвободившуюся энергию. Количество энергии до срабатывания мышеловок должно равняться количеству энергии после их срабатывания, а следовательно, корзина заряженных мышеловок должна быть тяжелее корзины захлопнувшихся. Рассмотрим еще один пример, на этот раз связанный с увеличением массы под воздействием кинетической энергии. Масса наполненной газом емкости больше, чем идентичной емкости, содержащей такой же газ, но при более низкой температуре. От температуры зависит скорость движения молекул в емкости: чем выше температура газа, тем быстрее движутся молекулы. Поскольку молекулы перемещаются быстрее, они обладают большей кинетической энергией (другими словами, результат сложения значений ½ mv ² для каждой молекулы выше при более высокой температуре газа), а значит, в этом случае масса емкости больше. Эта логика распространяется на все, что имеет запас энергии. Масса новой батарейки больше массы отработанной; масса термоса с горячим кофе больше массы термоса с холодным; только что испеченный пирог с мясом и картофелем более массивен по сравнению с остывшим.
Читать дальше
Конец ознакомительного отрывка
Купить книгу