• Пожаловаться

Ричард Фейнман: 9. Квантовая механика II

Здесь есть возможность читать онлайн «Ричард Фейнман: 9. Квантовая механика II» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. категория: Физика / на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

libcat.ru: книга без обложки

9. Квантовая механика II: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «9. Квантовая механика II»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ричард Фейнман: другие книги автора


Кто написал 9. Квантовая механика II? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

9. Квантовая механика II — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «9. Квантовая механика II», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Решения линейных дифференциальных уравнений с по­стоянными коэффициентами всегда могут быть выражены через экспоненты. Попробуем и здесь то же самое; в качестве пробного решения выберем

Тогда 119 обратится в Сократим на общий множитель получим - фото 12

Тогда (11.9) обратится в

Сократим на общий множитель получим Два последних члена равняются 2А cos - фото 13

Сократим на общий множитель получим Два последних члена равняются 2А cos kb так что EE 0 2Acoskb - фото 14; получим

Два последних члена равняются 2А cos kb так что EE 0 2Acoskb 1113 Мы - фото 15

Два последних члена равняются cos kb, так что

E=E0-2Acoskb. (11.13)

Мы обнаружили, что при любом выборе постоянной k имеется решение, энергия которого дается этим уравнением. В зависи­мости от k получаются различные возможные энергии, и каж­дая k соответствует отдельному решению. Решений бесконечно много, но это и не удивительно, ведь мы исходим из беско­нечного числа базисных состояний.

Посмотрим, каков смысл этих решений. Для каждой k уравнение (11.10) дает свои а. Тогда амплитуды обращаются в

причем нужно помнить что энергия Е также зависит от k в согласии с уравнением - фото 16

причем нужно помнить, что энергия Е также зависит от k в сог­ласии с уравнением (11.13). Множитель картинка 17дает пространст­венную зависимость амплитуд. Амплитуды при переходе от атома к атому колеблются.

При этом имейте в виду, что колебания амплитуды в прост­ранстве комплексны, модуль ее вблизи любого атома один и тот же, а фаза (в данный момент) от атома к атому сдвигается на ikb. Чтобы можно было видеть, что происходит, поставим у каж­дого атома вертикальную черточку, равную вещественной части амплитуды (фиг. 11.2).

Фиг 112 Изменение вещественной части С n с х n Огибающая этих вертикалей - фото 18

Фиг. 11.2. Изменение вещественной части Сnс хn.

Огибающая этих вертикалей (по­казанная штрихованной линией) является, конечно, косинусо­идой. Мнимая часть Сn это тоже колеблющаяся функция, но она сдвинута по фазе на 90° , так что квадрат модуля (сумма квадратов вещественной и мнимой частей) у всех С один и тот же.

Итак, выбирая k, мы получаем стационарное состояние с определенной энергией Е. И в каждом таком состоянии элект­рону одинаково вероятно оказаться около любого из атомов, никаких преимуществ у одного атома перед другим нет. От атома к атому меняется только фаза. Фазы меняются еще и со време­нем. Из (11.14) следует, что вещественная и мнимая части распространяются по кристаллу, как волны, как веществен­ная и мнимая части выражения

Волна может двигаться либо к положительным либо к отрицательным х смотря по - фото 19

Волна может двигаться либо к положительным, либо к отрица­тельным х, смотря по тому, какой знак выбран для k.

Заметьте, что мы предположили, что поставленное в нашем пробном решении (11.10) число k есть число вещественное. Теперь видно, почему в бесконечной цепочке атомов так и долж­но быть. Пусть k было бы мнимым числом — ik'. Тогда амплитуды аn менялись бы, как картинка 20, что означало бы, что амплитуда растет все выше и выше, когда х возрастает, или при k' отрицательном, когда х становится большим отрицательным числом. Такой вид решения был бы вполне хорош, если бы цепочка атомов на чем-то кончалась, но в бесконечной цепи атомов это не может быть фи­зическим решением. Оно привело бы к бесконечным амплиту­дам и, стало быть, к бесконечным вероятностям, которые не могут отражать действительного положения вещей. Позже мы встретимся с примером, когда и у мнимых k есть смысл.

Соотношение (11.13) между энергией Е и волновым числом k изображено на фиг. 11.3.

Фиг 113 Энергия стационарных состояний как функция параметра k Как следует - фото 21

Фиг. 11.3. Энергия стационарных состояний как функция параметра k.

Как следует из этого рисунка, энергия может меняться от Е 0 - 2 А при k =0 до Е 0+ при k= ± p / /b. График начерчен для положительных А, при отрица­тельных А кривую пришлось бы перевернуть, но область изменения осталась бы прежней. Существенно то, что в некоторой области, или «полосе» энергий допустимы любые значения энергии; вне полосы энергии быть не может. Из наших пред­положений следует, что если электрон в кристалле находится в стационарном состоянии, энергия его не сможет оказаться вне этой полосы.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «9. Квантовая механика II»

Представляем Вашему вниманию похожие книги на «9. Квантовая механика II» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Отзывы о книге «9. Квантовая механика II»

Обсуждение, отзывы о книге «9. Квантовая механика II» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.