Ричард Фейнман - 9. Квантовая механика II

Здесь есть возможность читать онлайн «Ричард Фейнман - 9. Квантовая механика II» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

9. Квантовая механика II: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «9. Квантовая механика II»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

9. Квантовая механика II — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «9. Квантовая механика II», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 3. Два рода импульсов

Уравнение для тока довольно интересно, хотя порой причи­няет немало забот. Ток можно было бы считать чем-то вроде про­изведения плотности частиц на скорость. Плотность выглядела бы как yy*, так что здесь все в порядке. Каждый член в (19.12) напоминает типичное выражение для среднего значения опера­тора

Поэтому быть может следовало бы рассматривать его как скорость потока Но - фото 617

Поэтому, быть может, следовало бы рассматривать его как ско­рость потока? Но тогда получается, что скорость с импульсом можно связать двояким образом, ведь с равным правом можно было бы считать, что скоростью должно быть отношение импуль­са к массе картинка 618 . Эти две возможности разнятся на вектор-потен­циал.

Оказывается, те же две возможности имелись еще в класси­ческой физике, и в ней тоже было найдено, что импульс можно определить двумя путями. Один можно назвать «кинематиче­ским импульсом», но для абсолютной ясности я в этой лекции буду его называть « mv -импульсом». Это импульс, получаемый от перемножения массы на скорость. Другой, более математичный, более отвлеченный импульс, именуемый иногда «динамическим импульсом», а я его буду называть « р -импульс». Итак, у нас есть две возможности:

mv-импульс=m v , (19.14)

р-импульс=т v+ А . (19,15)

И вот оказывается, что в квантовой механике, вклю­чающей магнитные поля, с оператором градиента картинка 619свя­зан именно р -импульс, так что оператор скорости это (19.13).

Здесь я хотел бы немного отклониться от темы и по­яснить, почему так получается—отчего в квантовой механике должно быть нечто по­хожее на (19.15). Волновая функция меняется со временем, следуя уравнению Шредингера (19.3). Если бы я внезапно изменил векторный потенциал, то в первое мгновение вол­новая функция не изменилась бы, а изменилась бы только скорость ее изменения. Теперь представьте себе, что случится в следующих обстоятельствах. Пусть имеется длинный соленоид, в котором я создаю поток магнитного поля (поля В), как пока­зано на фиг. 19.2.

Фиг 192 Электрическое поле снаружи соленоида ток в котором увеличивается - фото 620

Фиг. 19.2. Электрическое поле снаружи соленоида, ток в кото­ром увеличивается.

А поблизости сидит заряженная частица. До­пустим, что этот поток почти мгновенно с нуля вырастает до какого-то значения. Сперва векторный потенциал равен нулю, а потом я его включаю. Это означает, что я внезапно создаю кру­говой вектор-потенциал А. Вы помните, что криволинейный ин­теграл от А вдоль петли это то же самое, что поток поля В сквозь петлю [см. гл. 14, § 1 (вып. 5)]. И что же происходит, когда я мгновенно включаю векторный потенциал? Согласно квантовомеханическому уравнению, внезапное изменение А не вызывает внезапного изменения y; волновая функция пока та же самая. Значит, и градиент не изменился.

Но вспомните, что происходит электрически, когда я вне­запно включаю поток. В течение краткого времени, пока поток растет, возникает электрическое поле, контурный интеграл от которого равен скорости изменения потока во времени

Е=- д A /дt. (19.16)

Если поток резко меняется, то электрическое поле достигает огромной величины и оказывает сильное воздействие на частицу. Эта сила равна произведению заряда на электрическое поле; стало быть, в момент появления потока частица получает полный импульс (т. е. изменение в m v ), равный - q А. Иными словами, если вы подействуете на заряд векторным потенциалом, включив его внезапно, то этот заряд немедленно схватит mv-импульс, равный - q А. Но имеется нечто, не меняющееся не­медленно,— это разность между m vи - q А.Стало быть, сумма p =m v+ q Aи есть то, что не меняется, если вы подвергаете вектор-потенциал внезапному изменению. Именно эту величину мы именуем p -импульсом, именно она играет важную роль в классической динамике; она же оказывается существенной и в квантовой механике. Эта величина зависит от характера волновой функции и является преемником оператора

9 Квантовая механика II - изображение 621

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «9. Квантовая механика II»

Представляем Вашему вниманию похожие книги на «9. Квантовая механика II» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Львовский - Отличная квантовая механика
Александр Львовский
Отзывы о книге «9. Квантовая механика II»

Обсуждение, отзывы о книге «9. Квантовая механика II» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x