Ричард Фейнман - 5b. Электричество и магнетизм

Здесь есть возможность читать онлайн «Ричард Фейнман - 5b. Электричество и магнетизм» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

5b. Электричество и магнетизм: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «5b. Электричество и магнетизм»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

5b. Электричество и магнетизм — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «5b. Электричество и магнетизм», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ясно, что для каждого поля В векторный потенциал А не един­ственный; существует много возможностей.

Фиг 141 Однородное магнитное поле В направленное по оси z соответствует - фото 221

Фиг. 14.1. Однородное маг­нитное поле В, направленное по оси z, соответствует векторному потенциалу А (А=Вr'/2), который вращается вокруг оси z. т' — расстояние до оси z.

Третье решение [уравнение (14.8)] обладает рядом интерес­ных свойств. Поскольку x-компонента пропорциональна -y, а y-компонента пропорциональна -+x, то вектор А должен быть перпендикулярен вектору, проведенному от оси z, кото­рый мы обозначим r' (штрих означает, что это не вектор рас­стояния от начала). Кроме того, величина А пропорциональна Ц(x 2+y 2) и, следовательно, пропорциональна r '. Поэтому А (для однородного поля) может быть записано просто

5b Электричество и магнетизм - изображение 222

(14.9)

Векторный потенциал А равен по величине Br ' / 2 , и вращается вокруг оси z, как показано на фиг. 14.1. Если, например, поле В есть поле внутри соленоида вдоль его оси, то векторный по­тенциал циркулирует точно таким же образом, как и токи в соленоиде.

Векторный потенциал однородного поля может быть получен и другим способом - фото 223

Векторный потенциал однородного поля может быть полу­чен и другим способом. Циркуляция А вдоль любой замкнутой петли Г может быть выражена через поверхностный интеграл от СXА с помощью теоремы Стокса [уравнение (3.38), стр. 63]

(14.10)

Но интеграл справа равен потоку В сквозь петлю, поэтому

1411 Итак циркуляция А вдоль всякой петли равна потоку В сквозь петлю Если - фото 224

(14.11)

Итак, циркуляция А вдоль всякой петли равна потоку В сквозь петлю. Если мы возьмем круглую петлю радиуса r' в плоско­сти, перпендикулярной однородному полю В, то поток будет в точности равен

Если выбрать начало отсчета в центре петли так что А можно считать - фото 225

Если выбрать начало отсчета в центре петли так что А можно считать - фото 226

Если выбрать начало отсчета в центре петли, так что А можно считать направленным по касательной и функцией толь­ко от r', то циркуляция будет равна

Как и раньше, получаем

5b Электричество и магнетизм - изображение 227

В только что разобранном примере мы вычисляем вектор­ный потенциал из магнитного поля, обычно поступают наоборот. В сложных задачах всегда проще найти векторный потенциал, а затем уже из него найти магнитное поле. Сейчас мы покажем, как это можно сделать.

§ 2. Векторный потенциал заданных токов

5b Электричество и магнетизм - изображение 228

Раз В определяется токами, значит, и А тоже. Мы хотим теперь выразить А через токи. Начнем с нашего основного уравнения (14.2):

5b Электричество и магнетизм - изображение 229

откуда, конечно, следует

5b Электричество и магнетизм - изображение 230

Это уравнение для магнитостатики; оно похоже на уравнение

(14.13)

для электростатики.

Наше уравнение 1412 для векторного потенциала станет еще более похожим на - фото 231

Наше уравнение (14.12) для векторного потенциала ста­нет еще более похожим на уравнение для j, если перепи­сать СX(СX А), используя векторное тождество [см. уравне­ние (2.58) стр. 44]

(14.14)

5b Электричество и магнетизм - изображение 232

Поскольку мы выбрали С·А=0 (и теперь вы видите, по­чему), уравнение (14.12) приобретает вид

(14.15)

Фиг 142 Векторный потенциал А в точке 1 определяется интегралом по элементам - фото 233

Фиг. 14.2. Векторный потенциал А в точке 1 определяется интегралом по элементам тока jdV во всех точках 2.

Это векторное уравнение, конечно, распадается на три урав­нения

5b Электричество и магнетизм - изображение 234

5b Электричество и магнетизм - изображение 235

и каждое из этих уравнений математически идентично уравнению

(14.17)

Все, что мы узнали о нахождении потенциала для извест­ного r, можно использовать для нахождения каждой компо­ненты А, когда известно j!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «5b. Электричество и магнетизм»

Представляем Вашему вниманию похожие книги на «5b. Электричество и магнетизм» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «5b. Электричество и магнетизм»

Обсуждение, отзывы о книге «5b. Электричество и магнетизм» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x