
(11.24)
С помощью (11.23) получаем

(11.25)
Поле в сферической полости больше среднего поляна величину Р/Зe 0. (Сферическая дырка дает поле, находящееся на 1/ 3пути от поля параллельной щели к полю перпендикулярной щели.)
§ 5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
В жидкости мы ожидаем, что поле, поляризующее отдельный атом, скорее похоже на Е дырка, чем просто на Е. Если взять E дыркаиз (11.25) в качестве поляризующего поля, входящего в (11.6), то уравнение (11.8) приобретет вид

(11.26)

или
(11.27)

Вспоминая, что х-1 как раз равна Р/ e 0 Е, получаем
(11.28)
что определяет диэлектрическую проницаемость жидкости и через атомную поляризуемость a . Это формула Клаузиуса — Моссотти.
Если N a очень мало, как, например, для газа (потому что там мала плотность N), то членом N a /3 можно пренебречь по сравнению с 1, и мы получаем наш старый результат — уравнение (11.9), т.е.

(11.29)
Давайте сравним уравнение (11.28) с некоторыми экспериментальными данными. Сначала стоит обратиться к газам, для которых из измерений x можно с помощью уравнения (11.29) найти значение а. Так, для дисульфида углерода при нулевой температуре по Цельсию диэлектрическая проницаемость равна 1,0029, так что N a= 0,0029. Плотность газа легко вычислить, а плотность жидкостей можно найти в справочниках. При 20°C плотность жидкого CS 2в 381 раз выше плотности газа при 0°С, Это значит, что N в 381 раз больше в жидкости, чем в газе, а отсюда (если сделать допущение, что исходная атомная поляризуемость дисульфида углерода не меняется при его конденсации в жидкое состояние) N aв жидкости в 381 раз больше 0,0029, или равно 1,11. Заметьте, что N a /З составляет почти 0,4. С помощью этих чисел мы предсказываем, что величина диэлектрической проницаемости равна 2,76, что достаточно хорошо согласуется с наблюденным значением 2,64.
В табл. 11.1 мы приводим ряд экспериментальных данных по разным веществам, а также значения диэлектрической проницаемости, вычисленной, как только что было описано, no формуле (11.28).

Согласие между опытом и теорией для аргона и кислорода даже лучше, чем для CS 2, и не столь хорошее для четыреххлористого углерода. В целом результаты показывают, что уравнение (11.28) работает с хорошей точностью.
Наш вывод уравнения (11.28) справедлив только для электронной поляризации в жидкостях. Для полярных молекул вроде Н 2O он неверен. Если провести такие же вычисления для воды, то для N a . получим значение 13,2, что означает, что диэлектрическая проницаемость этой жидкости отрицательна, тогда как опытное значение x равно 80. Дело здесь связано с неправильной трактовкой постоянных диполей, и Онзагер указал правильный способ решения. Мы не можем сейчас останавливаться на этом вопросе, но если он вас интересует, то подробно это обсуждается в книге Киттеля «Введение в физику твердого тела».
§ 6. Твердые диэлектрики
Обратимся теперь к твердым телам. Первый интересный факт относительно твердых тел заключается в том, что у них бывает постоянная поляризация, которая существует даже и без приложения внешнего электрического поля. Примеры можно найти у веществ типа воска, который содержит длинные молекулы с постоянным дипольным моментом. Если растопить немного воску и, пока он еще не затвердел, наложить на него сильное электрическое поле, чтобы дипольные моменты частично выстроились, то они останутся в таком положении и после того, как воск затвердеет. Твердое вещество будет обладать постоянной поляризацией, которая остается и в отсутствие поля. Такое вещество называется электретом.
Читать дальше