Ричард Фейнман - 1. Современная наука о природе, законы механики

Здесь есть возможность читать онлайн «Ричард Фейнман - 1. Современная наука о природе, законы механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

1. Современная наука о природе, законы механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «1. Современная наука о природе, законы механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

1. Современная наука о природе, законы механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «1. Современная наука о природе, законы механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Обсудим теперь влияние ориентации системы координат на физические законы. Давайте посмотрим, не будут ли нам снова полезны Мик и Джо. Чтобы избежать ненужных сложностей, предположим, что эти молодые люди находятся в одной точке пространства (мы уже показали, что их системы координат можно перемещать). Пусть оси системы координат Мика по­вернуты относительно системы координат Джо на угол q, Обе системы координат изображены на фиг. 11.2, где мы ограничи­лись двумя измерениями.

Фиг 112 Две координатные системы ориентированные поразному - фото 134

Фиг. 11.2. Две координатные системы, ориентированные по-раз­ному.

Произвольная точка Р снабжается координатами (х, у) в системе Джо и (х', у') в системе Мика. Как и в предыдущем случае, начнем с того, что выразим коор­динаты х' и у' через х, у и q. Для этого опустим из Р перпенди­куляры на все четыре координатные оси и проведем АВ пер­пендикулярно PQ. Из чертежа ясно, что х' можно представить как сумму двух отрезков вдоль оси х', а у'— как разность двух отрезков вдоль АВ. Длины этих отрезков выражаются через х, у и 6; мы добавляем еще уравнение для третьей координаты:

х'=х cosq+ sinq,

y'=ycos q -x sinq, (11.5)

z'=z.

Теперь (мы поступали так и раньше) установим соотношения между силами, измеряемыми двумя наблюдателями. Предполо­жим, что сила F, имеющая (с точки зрения Джо) составляющие F x и F y , действует на расположенную в точке Р на фиг. 11.2 частицу массы m . Для простоты сдвинем обе системы коорди­нат так, что начала их переместятся в точку Р, как показано на фиг. 11.3. Мик скажет нам, что сила, по его мнению, имеет составляющие F x ' и F y ' вдоль его осей.

Фиг 113 Составляющие сил в двух системах Составляющая F x как и F y - фото 135

Фиг. 11.3, Составляющие сил в двух системах.

Составляющая F x , как и F y , имеет составляющие вдоль обеих осей х' и у'. Чтобы выра­зить F x ' через F x и F y , сложим составляющие этих сил вдоль оси х'; точно таким же образом можно выразить и F y ' через F х и F y . В результате получим

F x .=F x cosq+F y smq,

F y .=F y cosq-F x smq, (11.6)

F z ' = F z

Интересно отметить случайность которая в дальнейшем окажется очень важной - фото 136

Интересно отметить случайность, которая в дальнейшем ока­жется очень важной: формулы (11.5) и (11.6) для координат Р и составляющих F соответственно тождественны по форме. Как и раньше, предположим, что законы Ньютона справед­ливы в системе координат Джо и выражаются уравнениями (11.1). Снова возникает вопрос: может ли Мик пользоваться законами Ньютона, будут ли их предписания выполняться в повернутой системе координат? Другими словами, если пред­положить, что уравнения (11.5) и (11.6) дают связь между из­меряемыми величинами, то верно ли, что

Чтобы проверить эти уравнения, вычислим левые и правые части независимо, а затем сравним результаты. Чтобы вычис­лить левые части, умножим уравнения (11.5) на m и продиффе­ренцируем их дважды по времени, считая угол 9 постоянным. Это дает

Вычислим правые части уравнений 117 подставив 111 в уравнения 116 - фото 137

Вычислим правые части уравнений 117 подставив 111 в уравнения 116 - фото 138

Вычислим правые части уравнений (11.7), подставив (11.1] в уравнения (11.6). Получаем

Глядите! Правые части уравнений (11.8) и (11.9) тождест­венны; значит, если законы Ньютона верны в одной системе координат, то ими можно пользоваться и в другой системе. Эти рассуждения заставляют нас сделать некоторые важные выводы: во-первых, никто не может утверждать, что избранная им система координат единственна, она может быть, конечно, более удобной при решении частных задач. Например, удобно, но не обязательно взять направление силы тяжести за одну из осей координат. Во-вторых, это означает, что любой механизм, если только он является самостоятельным устройством и об­ладает всем необходимым для создания силы, будет работать одинаково, как бы его ни повернули.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «1. Современная наука о природе, законы механики»

Представляем Вашему вниманию похожие книги на «1. Современная наука о природе, законы механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «1. Современная наука о природе, законы механики»

Обсуждение, отзывы о книге «1. Современная наука о природе, законы механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x