Уолтер Левин - Глазами физика. От края радуги к границе времени

Здесь есть возможность читать онлайн «Уолтер Левин - Глазами физика. От края радуги к границе времени» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Глазами физика. От края радуги к границе времени: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Глазами физика. От края радуги к границе времени»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге не менее яркой, чем его знаменитые лекции, профессор Левин рассказывает о самых необычных и интересных гранях физики, о чудесах, которые творятся каждый день вокруг нас, – например, о том, почему ударяет молния. О чем бы ни решил рассказать автор, ему всегда удается совместить обучение с развлечением.
Книга предназначена для студентов и преподавателей, а также для всех, кто хочет изучать физику с удовольствием и интересом.
На русском языке публикуется впервые.

Глазами физика. От края радуги к границе времени — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Глазами физика. От края радуги к границе времени», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мне необходимо было проверить теорию ядерного распада, которая говорит о взаимосвязи между гамма-излучением и испусканием электронов из ядер, а эта работа требовала очень точных измерений. Она уже была проделана в отношении целого ряда радиоактивных изотопов, но некоторые недавние измерения несколько отличались от положений вышеупомянутой теории. Тогда-то мой научный руководитель профессор Аалдерт Уапстра и предложил мне найти виновного – либо теория, либо измерения. Это показалось мне чрезвычайно интересным – все равно что собирать фантастически сложный пазл. Трудность задачи, однако, заключалась в том, что мои измерения должны были быть гораздо точнее сделанных до меня другими исследователями.

Из-за крайне малого размера электронов некоторые ученые считают, что в действительности их нельзя измерить: вообще-то они меньше одной триллионной сантиметра в сечении, да и длина волн гамма-излучения меньше миллиардной доли сантиметра. И все-таки физика дала мне в руки инструменты, чтобы обнаружить и измерить их. Это еще одно качество, за которое я люблю экспериментальную физику: она позволяет прикоснуться к невидимому.

Для получения нужных данных я должен был проводить измерения как можно дольше, ведь чем больше замеров я делал, тем точнее были результаты. Случалось, я работал по шестьдесят часов подряд, иногда без сна, и даже стал немного одержим работой.

Для физика-экспериментатора точность – это все. Точность – единственное, что имеет значение. Измерение без указания степени точности просто бессмысленно. Эта простая, мощная и абсолютно фундаментальная идея игнорируется практически во всех вузовских учебниках физики. Точность измерений критически важна в очень многих областях человеческой жизни.

В работе с радиоактивными изотопами добиться нужной степени точности было очень сложно, но результаты, получаемые мной на протяжении трех-четырех лет, становились все лучше и лучше. После усовершенствования детекторов они начали выдавать очень точные данные. Я подтвердил теорию ядерного распада и опубликовал свои выводы, а итогом моей работы стала докторская диссертация. Особенно меня тешила мысль, что мои выводы были ясными, точными и убедительными, что, поверьте, бывает довольно редко. Зачастую в физике, как и в науке в целом, результаты неочевидны. Мне же посчастливилось прийти к твердому и однозначному выводу. Сложив этот пазл, я создал себя как физика, а также помог составить «карту» доселе неизведанной территории субатомного мира. Мне было всего двадцать девять, и я был счастлив оттого, что внес в науку весомый вклад. Конечно же, не каждому суждено стать автором фундаментальных научных открытий, таким как Ньютон или Эйнштейн, но в науке есть еще немало сфер, которые нуждаются в изучении.

Мне очень повезло: получение ученой степени совпало с новой эрой открытий в области природы Вселенной. Астрономы совершали новые открытия чуть ли не каждый год. Одни в поисках водяных паров изучали атмосферу Марса и Венеры. Другие обнаружили вокруг Земли кольца энергетически заряженных частиц, удерживаемые магнитным полем, – теперь мы зовем их поясами Ван Аллена. Третьи выявили огромные, мощнейшие источники радиоволн, известные сегодня как квазары – квазизвездные источники радиоизлучения. В 1965 году было открыто космическое микроволновое фоновое (реликтовое) излучение – следы энергии, высвободившейся после мощного взрыва, что служит убедительным доказательством теории Большого взрыва, в результате которого образовалась наша Вселенная. Прежде эта теория считалась неоднозначной и противоречивой. А вскоре после этого, в 1967 году, астрономы обнаружили еще и новую категорию звезд, названную пульсарами.

Конечно, я мог бы продолжать работать в области ядерной физики, ведь там в те времена происходили великие открытия. Работа исследователей в основном тяготела к охоте на стремительно растущий «зоопарк» субатомных частиц; самые главные из них сегодня называются кварками, и, как оказалось, они служат строительными блоками для протонов и нейтронов. Поведение кварков разнообразно и непредсказуемо, поэтому, чтобы классифицировать их, физики присвоили им определения, на научном жаргоне ароматы: верхний (up), нижний (down), странный (strange), очарованный (charm), самый верхний (top), самый нижний (bottom). Открытие кварков стало одним из тех прекрасных моментов в науке, когда чисто теоретическая идея подтверждается экспериментально. Сначала теоретики предсказали существование кварков, а затем экспериментаторам удалось их обнаружить. Эти частицы оказались весьма экзотическими и показали ученым, что материя в своих базовых основах неизмеримо сложнее, чем считалось раньше. Например, теперь нам известно, что протоны состоят из одного верхнего и одного нижнего кварка, удерживаемых вместе мощной ядерной силой в виде еще одних странных частиц – глюонов. Недавно теоретики подсчитали, что масса верхнего кварка составляет около 0,2 процента массы протона, а масса нижнего кварка – около 0,5 процента массы протона. Это вам не старое доброе ядро атома!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Глазами физика. От края радуги к границе времени»

Представляем Вашему вниманию похожие книги на «Глазами физика. От края радуги к границе времени» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Глазами физика. От края радуги к границе времени»

Обсуждение, отзывы о книге «Глазами физика. От края радуги к границе времени» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x