Вот она, мощь физики! Только эта наука способна открыть нам, что наблюдаемая Вселенная состоит примерно из 100 миллиардов галактик или что из всей материи в видимой Вселенной лишь около четырех процентов – это обычная материя, из которой состоят звезды и галактики, а также вы и я. Еще около 23 процентов составляет темная материя, невидимая для человека. Нам известно, что она существует, но что это такое – мы не знаем. Оставшиеся 73 процента, или основная часть энергии в нашей Вселенной, – это темная энергия, тоже невидимая. Никто в мире не имеет ни малейшего представления о том, что она такое. Получается, что мы практически ничего не знаем о почти 96 процентах массы/энергии во Вселенной. Физика объяснила человечеству многие вещи, но в мире осталось еще так много неразгаданных тайн. Лично меня это очень вдохновляет!
Физика исследует невообразимо необъятный мир Вселенной, причем она способна проникнуть в суть мельчайших частиц материи вроде нейтрино, составляющих ничтожно малую часть протона. Как раз этой теме я как физик посвящал б о льшую часть своего времени: я изучал сверхмалые частицы, измеряя и регистрируя выбросы частиц и излучение радиоактивных ядер. Этот вопрос изучает ядерная физика, вернее, тот ее отдел, который не имеет никакого отношения к атомной бомбе. Попросту говоря, предмет моего научного интереса составляло изучение на самом фундаментальном уровне того, что заставляет материю функционировать и развиваться.
Вы, должно быть, знаете, что почти вся видимая и осязаемая материя состоит из химических элементов, таких как водород, кислород и углерод, соединенных в молекулы. Наверняка вам также известно, что атом, наименьшая частица химического элемента, состоит из ядра и электронов, а ядро, в свою очередь, из протонов и нейтронов. Самый легкий и наиболее часто встречающийся элемент во Вселенной, водород, имеет один протон и один электрон. Но существует такая форма водорода, в ядре которой есть и нейтрон, и протон. Это изотоп водорода – другая форма этого химического элемента, называемая дейтерием. А есть еще и третья форма изотопа водорода, с двумя нейтронами, присоединившимися к протону в ядре; она называется тритием. Все изотопы конкретного химического элемента состоят из одинакового числа протонов, но разного числа нейтронов, а элементы – из различного количества изотопов. Например, существует тринадцать изотопов кислорода и тридцать шесть изотопов золота.
Многие изотопы стабильны: они могут оставаться в одном виде более-менее вечно. Но большинство не стабильны, или радиоактивны. Радиоактивные изотопы имеют обыкновение распадаться: рано или поздно они превращаются в другие химические элементы. При этом некоторые из радиоактивных изотопов стабильны: в них распад со временем прекращается. А другие нестабильны, и в них распад продолжается до тех пор, пока не будет достигнуто стабильное состояние. Из трех изотопов водорода радиоактивен только один – тритий, – он превращается в стабильный изотоп гелия. Из тринадцати изотопов кислорода стабильны три; из тридцати шести изотопов золота – только один.
Вероятно, вы помните, что скорость радиоактивного распада изотопов измеряется периодом полураспада, который варьируется от микросекунды (одной миллионной доли секунды) до миллиардов лет. Говоря, что период полураспада трития составляет около двенадцати лет, мы имеем в виду, что в данном образце трития половина изотопов через двенадцать лет распадутся, следовательно, через двадцать четыре года их останется всего четверть от имеющегося числа. Ядерный распад – один из важнейших процессов, в ходе которого создаются и преобразуются химические элементы. И это никакая не алхимия! Во время работы над докторской диссертацией мне часто доводилось своими глазами видеть, как радиоактивные изотопы золота превращались в ртуть, а не наоборот, как хотелось бы средневековым алхимикам. Впрочем, многие изотопы ртути, как и платины, действительно превращаются в золото. Но только один изотоп платины и только один изотоп ртути превращаются в стабильное золото того типа, которое можно носить на пальце в виде кольца.
Моя работа была чрезвычайно захватывающей: радиоактивные изотопы распадались буквально у меня в руках. Кроме того, она была очень интенсивной. Период полураспада изотопов, с которыми я работал, обычно составлял всего один, максимум несколько дней. Скажем, период полураспада золота-198 – чуть больше двух с половиной дней, так что работать приходилось очень быстро. Я мчался из Делфта в Амстердам, где находился циклотрон, производящий эти изотопы, а затем несся обратно в лабораторию в Делфте. Там я растворял изотопы в кислоте, чтобы получить их в жидком виде, жидкость наливал на тончайшую пленку и помещал в детекторы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу