Камертон, например, сконструирован так, чтобы всегда вибрировать на своей резонансной частоте колебаний. Если она равна 440 герц, камертон издает ноту, известную как ля основной октавы. Практически независимо от того, каким способом вы заставляете камертон вибрировать, его зубцы будут колебаться, то есть двигаться взад-вперед, с частотой 440 раз в секунду.
Все материалы имеют свои резонансные частоты, и если у вас есть возможность добавить энергию в систему или объект, он может начать вибрировать на этих частотах и вам потребуется затратить относительно немного энергии, чтобы получить весьма существенный результат. Например, если легонько постучать по пустому бокалу ложечкой или потереть обод мокрым пальцем, он отреагирует определенным звуком, то есть резонансной частотой колебаний. Конечно, резонанс – это вам не какая-то дармовщина, хотя иногда все выглядит именно так. Но на резонансных частотах объекты действительно с наибольшей эффективностью используют прилагаемую к ним энергию.
По этому же принципу работает скакалка. Если вы когда-нибудь держали ее за один конец, то знаете, что чтобы раскрутить скакалку ровной красивой дугой, потребуется некоторое время – и хотя, чтобы получить такую дугу, вы, возможно, крутили рукой с зажатой в ней ручкой, главное в этом движении то, что вы раскачиваете скакалку вверх-вниз или взад-вперед, производя колебания. В определенный момент скакалка начинает легко вертеться красивой дугой, и чтобы поддерживать этот процесс, вам достаточно едва двигать кистью, а друзья могут начать прыгать в середине этой дуги, интуитивно синхронизируя свои прыжки с резонансной частотой колебаний скакалки.
Возможно, вы этого не знали, играя в свое время на детской площадке, но вертеть рукой достаточно только одному человеку – второй может просто держаться за другой конец и скакалка все равно будет отлично крутиться. Разгадка в том, что в определенный момент крутящие достигают самой низкой резонансной частоты колебания, также называемой резонансом на основной частоте. Без него игра, известная как прыжки через двойную скакалку – когда два человека крутят скакалку в противоположных направлениях, а третий прыгает, – была бы практически невозможной. Две скакалки движутся в противоположных направлениях в руках одних и тех же людей благодаря тому, что для продолжения процесса каждому из них достаточно затратить совсем немного энергии. Поскольку тяговым усилием в данном случае являются кисти рук, скакалка становится тем, что мы называем совершающим вынужденные колебания осциллятором. Достигнув этого резонанса скакалки, вы на интуитивном уровне знаете, что вам нужно оставаться на этой частоте, и больше не ускоряете движение кисти.
Если же вы это сделаете, то красивая вращающаяся дуга скакалки разобьется на отдельные загогулины, и прыгающий вряд ли этому обрадуется. Но если ваша скакалка достаточно длинная и вы сможете крутить свой конец быстрее, то увидите, что вскоре появятся две дуги в противофазе – когда одна идет вниз, а вторая вверх, а посередине веревка будет оставаться неподвижной. Мы называем эту среднюю точку узлом. При таком раскладе прыгать через скакалку могут двое ваших друзей – каждый через свою дугу. Возможно, вы видели такое в цирке. Что же в данном случае происходит? Вы достигли второй резонансной частоты. Практически все, что может вибрировать, имеет несколько резонансных частот, которые мы вскоре обсудим подробнее. Кроме того, у скакалки есть и более высокие резонансные частоты, что я могу продемонстрировать без особого труда.
Чтобы показать множественные резонансные частоты студентам, я натягиваю прямо в аудитории веревку длиной около трех метров между двумя вертикальными стержнями. Когда я передвигаю один конец веревки вверх и вниз (всего на пару сантиметров), производя ее колебания на стержне с помощью небольшого двигателя, частоту которого я могу изменять, она вскоре достигает своей самой низкой резонансной частоты колебаний, называемой первой гармоникой (ее еще называют основной), и выгибается дугой, как скакалка. Я раскачиваю конец веревки быстрее, и через какое-то время видим уже две дуги, представляющие собой зеркальные изображения друг друга. Это явление называется второй гармоникой, и она возникает, когда веревка начинает колебаться со скоростью, в два раза превышающей первую гармонику. Таким образом, если первая гармоника составляет 2 герца, два колебания в секунду, то вторая – 4 герца. Если мы продолжим раскачивать конец веревки еще быстрее, то достигнем третьей гармоники, которая, соответственно, будет в три раза больше первой, в нашем случае 6 герц. В этот момент мы увидим, что веревка разделилась поровну на три части с двумя неподвижными точками (узлами) на ней и с дугами, поочередно идущими вверх и вниз по мере движения вверх-вниз конца веревки с частотой шесть раз в секунду.
Читать дальше
Конец ознакомительного отрывка
Купить книгу