Уолтер Левин - Глазами физика. От края радуги к границе времени

Здесь есть возможность читать онлайн «Уолтер Левин - Глазами физика. От края радуги к границе времени» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Глазами физика. От края радуги к границе времени: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Глазами физика. От края радуги к границе времени»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге не менее яркой, чем его знаменитые лекции, профессор Левин рассказывает о самых необычных и интересных гранях физики, о чудесах, которые творятся каждый день вокруг нас, – например, о том, почему ударяет молния. О чем бы ни решил рассказать автор, ему всегда удается совместить обучение с развлечением.
Книга предназначена для студентов и преподавателей, а также для всех, кто хочет изучать физику с удовольствием и интересом.
На русском языке публикуется впервые.

Глазами физика. От края радуги к границе времени — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Глазами физика. От края радуги к границе времени», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы оценить реальность инерции на более интуитивном уровне, вспомните, как трудно, катаясь на коньках, сделать поворот в конце катка – ваше тело упрямо стремится вперед, и вам надо точно рассчитать, какую силу применить к конькам и при каком угле наклона, чтобы успешно развернуться и поехать в другую сторону, а не свалиться на лед или не врезаться в ограждение. Если вы лыжник, подумайте о том, насколько проблематично быстро изменить курс, чтобы избежать столкновения с другим лыжником, вдруг оказавшимся на вашем пути. Причина, по которой мы гораздо чаще замечаем инерцию в подобных случаях, нежели в обычной повседневной жизни, заключается в том, что в обеих ситуациях сила трения, которая в нормальных условиях эффективно замедляет наши движения и помогает без труда изменить направление, очень мала. Только представьте, что бы произошло, если бы поле для гольфа было ледяным, – вы бы сразу увидели, что мяч без трения может двигаться вперед очень-очень далеко, намного дальше, чем на обычном покрытии.

А теперь обсудим, насколько революционной была эта идея Ньютона. Мало того что она перевернула прежние представления о движущихся телах, она еще указала путь к открытию множества постоянно действующих на нас невидимых сил, таких как силы трения, силы тяжести, магнитные и электрические силы. Вклад Ньютона настолько важен, что единица силы в физике названа его именем. Но великий ученый не только позволил нам «увидеть» эти скрытые силы, но и показал, как их измерить.

Своим вторым законом Ньютон обеспечил нас удивительно простым, но очень полезным инструментом для расчета сил. По мнению некоторых людей, знаменитое F = ma – самое важное уравнение всей физики. Формулирую словами: результирующая сила, действующая на тело ( F ), равна его массе ( m ), умноженной на его ускорение ( а ).

Чтобы наглядно увидеть всего один из многочисленных примеров, объясняющих, почему эта формула очень полезна в повседневной жизни, рассмотрим рентгеновский аппарат. Согласитесь, определить точный диапазон энергий рентгеновских лучей при использовании этого оборудования чрезвычайно, жизненно важно. Вот как нам помогает в этом уравнение Ньютона.

Один из главных выводов в физике (мы подробнее обсудим его чуть позже) заключается в том, что на заряженную частицу (скажем, электрон, протон или ион), помещенную в электрическое поле, действует определенная сила. Если нам известен заряд частицы и напряженность электрического поля, можно вычислить действующую на нее электрическую силу. А зная ее, мы с помощью второго закона Ньютона можем вычислить ускорение частицы [10].

Электроны в рентгеновском аппарате, прежде чем ударить по намеченной цели, ускоряются внутри рентгеновской трубки. Скорость, с которой они ударяют в цель, определяет диапазон производимых при этом энергий рентгеновского излучения. Изменение напряженности электрического поля позволяет изменить ускорение электронов. Таким образом, скоростью, с которой электроны ударяют в цель, можно управлять, выбирая нужный диапазон энергий рентгеновского излучения.

Для облегчения подобных расчетов физики используют в качестве единицы силы ньютон. 1 ньютон – это сила, ускоряющая тело массой 1 килограмм на 1 метр в секунду за секунду. Почему мы говорим «в секунду за секунду»? Потому что при ускорении скорость все время меняется; то есть, иными словами, после первой секунды ее рост не прекращается. Если ускорение постоянно, скорость каждую секунду изменяется на одну ту же величину.

Чтобы стало еще понятнее, приведу пример с шаром для боулинга, падающего с высотки на Манхэттене, скажем со смотровой площадки Эмпайр-стейт-билдинг. Известно, что ускорение падающих объектов на Земле составляет примерно 9,8 метра в секунду за секунду; его называют ускорением свободного падения и обозначают в физике буквой g. (Ради простоты изложения я в данном случае игнорирую сопротивление воздуха; позже мы поговорим об этом подробнее.) Через одну секунду шар для боулинга летит со скоростью 9,8 метра в секунду. К концу второй секунды он ускоряется еще на 9,8 метра в секунду, следовательно, движется со скоростью 19,6 метра в секунду. А к концу третьей секунды он уже будет лететь со скоростью 29,4 метра в секунду. Чтобы долететь со смотровой площадки до земли, ему требуется около 8 секунд. Таким образом, его скорость к этому моменту составляет 8 раз по 9,8, то есть около 78 метров в секунду (приблизительно 280 километров в час).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Глазами физика. От края радуги к границе времени»

Представляем Вашему вниманию похожие книги на «Глазами физика. От края радуги к границе времени» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Глазами физика. От края радуги к границе времени»

Обсуждение, отзывы о книге «Глазами физика. От края радуги к границе времени» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x