Пойдем на уступки мечтателям и, проявив известную резвость мысли, вообразим, что наш корпус успешно выдерживает соударения с космической пылью и защищает от космического излучения. Вообще-то говоря, никакой ультракорпус не поможет, но допустим, что с этой задачей мы справились.
По весьма уважительным причинам истребляется межзвездная среда.
Дело в том, что стоит лишь задуматься о двигателе, и все сразу отходит на задний план. (Впрочем, вероятно, справедлива и «обратная теорема»: «если заинтересоваться проблемой защиты, то можно уже не думать о двигателе».)
Проблема № 1 — проблема горючего.
Любой вид «химического» топлива должен быть отброшен сразу и бесповоротно. Действительно, при скорости 100 тысяч километров в секунду каждый килограмм ракеты имеет кинетическую энергию 5,4 · 10 14килограммометров. За эту энергию нужно «платить». Поэтому, даже если считать, что кпд двигателя равен единице, и пренебречь действием внешних сил, для разгона одного килограмма массы необходимо сжечь столько топлива, чтобы освободилось 5,4 · 10 22эргов [91] .
Мерить это число земными масштабами несколько затруднительно. Объемы обычных горючих, необходимые для получения такой энергии, исчисляются десятками, сотнями и тысячами кубических километров. Поэтому источником энергии могут служить только ядерные реакции — ядерное горючее.
На первый взгляд ядерная энергия спасает положение. Действительно, на каждый килограмм разгоняемой массы необходимо «сжечь» — перевести в кванты электромагнитного излучения — только 60 граммов горючего вещества.
Процессы, при которых все реагирующее вещество переходит в излучение, известны. Это реакции аннигиляции элементарных частиц с соответствующими античастицами. Например, при реакции «электрон — позитрон» две реагирующие частицы полностью «сгорают», и вместо них образуются два гамма-кванта.
Однако даже при самом пылком воображении приходится признать, что нет ни малейших надежд на использование таких реакций в технике хотя бы потому, что абсолютно невозможно представить резервуар для горючего антивещества. Античастицы моментально вступят в реакцию со стенками, после чего ракетный корабль с экипажем незамедлительно отправится в «надзвездные» миры.
Утешительные соображения по поводу «антигорючего»…
Можно ли думать, что весьма значительную массу антивещества удастся удержать в ловушке при помощи какого-то сверхсильного электромагнитного поля (в так называемой «магнитной бутылке») таким образом, что горючее не вступит в какой-либо контакт со стенками?
Надеяться можно вообще на все что угодно. Например, в средние века примерно столь же обоснованно полагали, что в обычной (немагнитной) бутылке можно запечатать дьявола.
Впрочем, пока мы летим «только» к созвездию Центавра, скрепя сердце можно примириться с обычным ядерным горючим.
Можно рассчитывать или на уже освоенные реакции распада тяжелых ядер, или же на термоядерные реакции синтеза легких ядер, энергетическую базу будущего. Если иметь в виду такие реальные ядерные топлива, то, чтобы разогнать 1 килограмм массы до скорости 100 тысяч километров в секунду, потребуется всего лишь несколько килограммов ядерного горючего [92] , допустим 10 килограммов. Вспоминая, что в процессе путешествия корабль должен минимум два раза набирать такую скорость (при отлете с Земли и при отправлении в обратный путь к Земле) и два раза гасить ее (при подлетах к звезде и к Земле), получаем, что на каждый килограмм полезной массы ракеты необходимо взять как минимум 10 тонн ядерного горючего.
Итак, если полезная масса 10 5тонн, стартовая масса ракеты как минимум — 10 9тонн. Примерно столько весит металлический астероид средних размеров — объемом в 1/ 10кубического километра.
И некоторые обнадеживающие цифры.
Оценим теперь энергию реактивной струи, необходимой для разгона ракеты с ускорением 1 м/сек 2.
Если считать, что струя состоит из частиц, имеющих массу покоя, то при разумных скоростях истечения (порядка 100 тысяч км/сек ) кинетическая энергия струи, выбрасываемой за секунду, определится маловразумительным числом 10 27эргов.
Фотонный двигатель не спасает положения. Мощность фотонной струи, обеспечивающей нужную тягу, — 3 · 10 27 эрг/сек .
На Земле невозможно найти процессы, при которых за секунду выделяется такая энергия. Весь земной шар за одну секунду получает от Солнца примерно в 550 раз меньшую энергию. Нужную мощность можно развить, полностью «сжигая» 1100 килограммов массы за одну секунду, или же, если думать об урановом горючем, примерно 1300 тонн урана.
Читать дальше