Случай, как-то рассказанный известным физиком Ричардом Фейнманом, иллюстрирует вездесущность уравнений Эйнштейна в современных дискуссиях о теории гравитации. В 1957 году Фейнмана пригласили на первую Американскую конференцию по общей теории относительности в Чапел-Хилл в штате Северная Каролина. Когда он прибыл в аэропорт и собирался взять такси, оказалось, что он не знает, проводится конференция в Университете Северной Каролины или в Университете штата Северная Каролина. Поэтому он спросил таксиста, не заметил ли он каких-нибудь людей, выглядящих отрешенными и повторяющих: «Джи-мю-ню, джи-мю-ню» {32} 32 Richard Feynman, “ Surely You re Joking, Mr. Feynman!”: Adventures of a Curious Character (New York: Norton, 2010), 58.
.
Суть уравнений Эйнштейна заключается в том, что геометрия в некоторой области пространства, выраженная тензором Эйнштейна, определяется находящейся там материей и энергией посредством тензора энергии-импульса. Другими словами, масса и энергия деформируют пространство-время, указывая ему, где и как искривляться. Геометрия пространства-времени, в свою очередь, определяет то, как движутся в нем тела. То есть уравнения Эйнштейна изящно объединили содержимое Вселенной с ее формой.
Любой тензор можно записать в терминах его компонент в виде матрицы, или таблицы. Тензор Эйнштейна и тензор энергии-импульса могут быть записаны как матрицы 4x4. У этих матриц по шестнадцать компонент, но не все они являются независимыми. Существует правило симметрии, требующее, чтобы элемент из определенной строки и столбца (например, из третьей строки и четвертого столбца) совпадал с элементом, у которого номера строки и столбца переставлены местами (в нашем примере — из четвертой строки и третьего столбца). Это похоже на зеркальную расстановку шахматных фигур относительно диагонали шахматной доски. Мы называем такие тензоры симметричными.
С учетом условия симметричности тензор Эйнштейна содержит десять независимых компонент. Так же, как и тензор энергии-импульса. Таким образом, уравнения Эйнштейна, которые связывают два тензора, дают десять независимых соотношений между компонентами. Они показывают, как материя и энергия влияют на различные характеристики пространства и времени. Некоторые из этих соотношений приводят к растяжению или сжатию. Другие — описывают скручивание или поворот. Все, что может случиться с пространством и временем из-за гравитационного воздействия вещества и энергии, содержится в этих уравнениях.
Но если уравнения Эйнштейна так просты и изящны, то почему потребовалось столько времени, чтобы их вывести? Как говорится, дьявол кроется в деталях. Вы не можете просто взять тензор Эйнштейна и непосредственно определить движения астрономических объектов, таких как планеты или звезды. То, как объекты движутся, определяется еще одним математическим объектом, который называется метрическим тензором. Переход от тензора Эйнштейна к метрическому тензору вовсе не очевиден и требует нескольких шагов.
Предположим, вам известно распределение массы и энергии в некоторой области пространства, и вы хотите определить, как в ней будут двигаться тела. Вот алгоритм расчета. Сначала используйте уравнения Эйнштейна, чтобы получить тензор Эйнштейна из тензора энергии-импульса. И тензор Эйнштейна, и связанный с ним тензор кривизны Римана (первый является своего рода сокращенной записью последнего) кодируют информацию о кривизне пространства-времени от точки к точке. Затем используйте компоненты либо тензора Эйнштейна, либо тензора Римана, чтобы построить геометрический объект, называемый аффинной связностью (или связностью Кристоффеля). Связность определяет то, как компоненты векторов (объектов, обладающих длиной и направлением) преобразуются, если вы перемещаете их параллельно самим себе от точки к точке. Далее, используйте аффинные связности, чтобы вычислить компоненты метрического тензора. Метрический тензор сшивает ткань пространства-времени, указывая, каким образом измерять расстояния между точками. Он предлагает модификацию теоремы Пифагора для искривленного пространства-времени. Наконец, используйте метрику для определения наиболее коротких путей, по которым в пространстве могут двигаться объекты. Из-за деформации пространства-времени они, как правило, будут изогнутыми, как, например, эллиптические орбиты планет вокруг Солнца.
Хотя математика общей теории относительности может напугать даже аспирантов, давайте воспользуемся аналогией, чтобы проиллюстрировать ее различные уровни. Начнем с плоской безграничной пустыни, представляющей собой пустое пространство-время. Раскидаем камни различных размеров и масс, — пусть символизируют разнообразные массивные объекты во Вселенной (например, звезды и планеты). Мы обнаружим, что более тяжелые камни будут давить на песок гораздо сильнее, чем легкие, оставляя гораздо более глубокие вмятины. А области вдали от камней останутся плоскими. Следовательно, чем б о льшая масса находится в конкретном регионе, закодированная в тензоре энергии-импульса, тем больше эта область прогибается, демонстрируя б о льшую кривизну, измеряемую тензором Эйнштейна.
Читать дальше