В качестве простого примера из классической механики рассмотрим некоторый объект, скажем коробку из-под чая, выброшенную астронавтом несколько десятилетий назад и медленно движущуюся в вакууме в отсутствие каких-либо сил, действующих на нее. Ее кинетическая энергия равна половине массы, умноженной на квадрат скорости. Потенциальная энергия коробки равна нулю из-за отсутствия сил и однородности пустого пространства. Таким образом, лагранжиан коробки состоит только из ее кинетической энергии. Принцип наименьшего действия утверждает, что траекторией такого объекта, обеспечивающей минимальное действие, будет прямая линия. Подставьте лагранжиан в уравнения Эйлера — Лагранжа, и в результате вы получите уравнения, описывающие движение с постоянной скоростью. Таким образом, довольно простой лагранжиан обрекает нашу коробку на бесконечное путешествие по прямой линии с постоянной скоростью.
Вклад Гильберта в общую теорию относительности — лагранжиан Эйнштейна — Гильберта (приводящий к действию Эйнштейна — Гильберта) — тоже является довольно простым. Тем не менее он достаточно богат на математические следствия и порождает уравнения поля в общей теории относительности. Кроме того, если у вас есть потребность модифицировать общую теорию относительности физически значимым способом, лагранжиан обеспечивает необходимые для этого средства. Мы увидим, что Шрёдингер в своих попытках расширения общей теории относительности для учета других сил в конечном итоге сделает именно это (модифицирует лагранжиан).
Гамильтон разработал другой способ описания механических систем: так называемый гамильтонов подход. Вместо вычитания потенциальной энергии из кинетической обе величины складываются. Эта сумма называется гамильтонианом и может быть использована для получения системы уравнений, описывающей взаимосвязь координат и импульса системы. Как и метод Лагранжа, гамильтонов подход также сыграл важную роль в современной физике, в том числе, как мы увидим, в формулировке квантовой механики Шрёдингера. Гамильтонов набор математических инструментов также может быть применен к общей теории относительности, как показал Эйнштейн, когда наконец сформулировал ее окончательную версию.
Эйнштейн предал гласности свой шедевр в практически окончательной форме на собрании Прусской академии наук 4 ноября 1915 года. Он был горд представить уравнения поля для полной теории гравитации, основанной на геометрии пространства-времени. 18 ноября он выступил перед той же аудиторией с другим докладом, в котором предложил свое решение вековой проблемы прецессии орбиты Меркурия. Два месяца спустя, когда расчеты были окончательно проверены, он писал своему другу Паулю Эренфесту: «Можете ли Вы представить себе мою радость от подтверждения идеи общей ковариантности, которая дала в результате правильные уравнения для движения перигелия Меркурия? От волнения я на несколько дней потерял дар речи» {31} 31 Альберт Эйнштейн Паулю Эренфесту, январь 1916, в Seelig, Albert Einstein, 156.
.
К тому времени, как Эйнштейн опубликовал окончательный вариант своей теории в престижном журнале Annalen der Physik (20 марта 1916 года), немецкий физик Карл Шварцшильд, проходя военную службу на русском фронте, уже нашел первое точное решение. Оказывается, он прочитал доклад Эйнштейна от 18 ноября и сделал вычисления для случая гравитирующего массивного сферического объекта, подобного звезде. Среди тьмы войны блестящее творение Эйнштейна осветило небо ярче, чем взрывы снарядов, подарив надежду и вдохновение по крайней мере одному солдату. К сожалению, Шварцшильд умер 11 мая 1916 года от неизлечимого аутоиммунного заболевания в возрасте сорока двух лет. Много десятилетий спустя решение Шварцшильда будет использовано для описания черных дыр. С тех пор было найдено множество других точных решений уравнений общей теории относительности.
Золотой храм Эйнштейна построен на твердом фундаменте: содержащейся во Вселенной материи и энергии. Начните с любого распределения материи и энергии, описываемого тензором энергии-импульса Т μν, и полевые уравнения общей теории относительности позволят вам определить компоненты другого математического объекта — тензора Эйнштейна G μν , описывающего геометрию пространства-времени. Уравнение G μν = 8πT μν (которое может быть записано в различных формах) считается одним из наиболее важных вкладов Эйнштейна наряду с его формулой Е = тс 2 и уравнением фотоэффекта. Все три гениальных уравнения высечены на мемориале Эйнштейна в Вашингтоне.
Читать дальше