При этом профессор Хокинг возвращался к квантовой теории тяготения, которая основывалась на гипотезе существования гравитона — кванта поля тяготения. Гравитон подобен фотону — это безмассовая частица, движущаяся со скоростью света и проявляющая свои уникальные свойства на очень малых расстояниях, меньших тысячной диаметра протона. Поле тяготения на таких масштабах приобретает совершенно новые черты и становится супергравитацией. Теория Эйнштейна для нее уже непригодна. Здесь нужна новая теория, объединяющая квантовую механику, идею суперсимметрии и общую теорию относительности. Она до сих пор интенсивно разрабатывается героическими усилиями интернационального коллектива физиков многих стран. Однако главным препятствием для развития этой замечательной теории остается отсутствие надежных экспериментальных данных.
На помощь пришла суперсимметрия, оказалось, что бесконечности, связанные с квантовой гравитацией, компенсируют друг друга. Это был выдающийся успех. Первая область квантовой физики, где злой дух бесконечностей был побежден и изгнан! Появилась реальная надежда создать непротиворечивую теорию элементарных частиц.
Однако более тщательные исследования показали, что часть бесконечностей все же осталась. И вот тут был сделан еще один важный шаг — выдвинута гипотеза о том, что окружающий нас мир не исчерпывается тремя известными нам измерениями — длиной, шириной и высотой, — и в нем есть еще скрытые, не видимые нами пространственные измерения.
Хотя мысль о высших пространственных измерениях — неподтвержденная экспериментом гипотеза, в глазах физиков она выглядит весьма убедительной. Она обещает отрубить головы дракону бесконечностей, как нить Ариадны ведет физиков к последовательной и самосогласованной теории вещества и поля. Трудно даже подумать, что столь плодотворная идея может оказаться всего лишь временной теоретической химерой.
Есть еще одно соображение, которое, казалось бы, убедительно говорит о том, что в нашем мире нет в явном (несвернутом) виде ни четвертого, ни более высоких пространственных измерений. Английский астрофизик Артур Эддингтон доказал, что в этом случае вообще не было бы атомного вещества, так как в мирах с числом измерений, большим трех, электрические заряды взаимодействуют слишком сильно. Электроны там не могут удержаться на орбитах, и атомы «взрываются внутрь» или коллапсируют. Может быть, такие своеобразные миры где-то и существуют вне нашей реальности, но в нашей Вселенной атомы вполне устойчивы. Трудность с лишними пространственными измерениями была главной причиной подозрительного отношения физиков к идее Калуцы. Первую серьезную попытку справиться с ней предпринял шведский теоретик Оскар Клейн. Перечитывая своего любимого Уэллса, в его «Машине времени» он наткнулся на следующий диалог:
— Можно ли признать действительно существующим кубом то, что не существует ни единого мгновения?
Филби задумался.
— А из этого следует, — продолжал Путешественник по Времени, — что каждое реальное тело должно обладать четырьмя измерениями: оно должно иметь длину, ширину, высоту и продолжительность существования. Но вследствие прирожденной ограниченности нашего ума мы не замечаем этого факта. И все же существуют четыре измерения, из которых три мы называем пространственными, а четвертое — временным. Правда, существует тенденция противопоставить три первых измерения последнему, но только потому, что наше сознание от начала нашей жизни и до ее конца движется рывками лишь в одном-единственном направлении этого последнего измерения…
По мнению Хокинга, классик фантастического жанра был вполне прав, и четвертое пространственно-временное измерение существует реально и не ощущается нами лишь потому, что мир в этом направлении имеет микроскопически малый радиус, представая неким замкнутым на себя крошечным пузырьком «вырожденной реальности».
Вспомним структуру электромагнитного поля, представив себе две разноименно заряженные металлические пластины и слой электрических силовых линий между ними. Если пластины раздвинуть на расстояние много большее их размеров, слой превратится в жгут силовых линий. Он обладает определенной упругостью, и его можно назвать электрической полевой струной. Подобная же магнитная струна образуется между двумя намагниченными шариками. С помощью мелких железных опилок ее можно сделать видимой и убедиться в том, что, будучи отклоненной, в сторону, она упруго восстанавливает свою форму. Размеры элементарных частиц в тысячи раз больше размеров составляющих их кварков, поэтому между кварками тоже натягиваются струны — суперструны глюонного поля. Их можно заметить в столкновениях частиц. Образование полевых струн — весьма распространенное явление в мире элементарных частиц.
Читать дальше
Конец ознакомительного отрывка
Купить книгу