Что Ахиллес может сделать, а чего нет, невозможно вывести из математики. Это зависит только от того, что говорят соответствующие законы физики. Если согласно этим законам он обгонит черепаху за заданное время, значит, так оно и будет. Если для этого придётся сделать бесконечное число шагов вида «перейди в определённое положение», то столько их и будет сделано. Если Ахиллесу для этого придётся пройти через несчётное бесконечное число точек, то он пройдёт через них. Но с физической точки зрения не произойдёт ничего бесконечного.
Таким образом, законы физики определяют различие не только между редким и часто встречающимся, вероятным и невероятным, тонко настроенным и нет, но даже между конечным и бесконечным. Подобно тому, как в одном и том же множестве вселенных может быть много астрофизиков, если вести измерения согласно одному набору законов физики, и их там может практически не быть при измерениях по другим законам, одна и та же последовательность событий может быть конечной или бесконечной в зависимости от законов физики.
Ошибку Зенона повторяли и в случае с другими математическими абстракциями. В общих чертах, она заключается в том, что абстрактный признак путают с одноимённым физическим. Поскольку можно доказать теоремы о математическом признаке, которые имеют статус абсолютно необходимых истин, можно ошибочно предположить наличие априорного знания о том, что законы физики должны говорить о соответствующем физическом признаке.
Другой пример — из геометрии. На протяжении веков не проводилось чёткой границы между её статусом как математической системы и физической теории, и вначале это не сильно мешало, потому что остальные науки значительно уступали геометрии в сложности, а теория Евклида была отличным приближением для всех возможных целей того времени. Но затем философ Иммануил Кант (1724–1804), который прекрасно знал о разнице между абсолютно необходимыми истинами математики и случайными истинами науки, тем не менее заключил, что законы геометрии Евклида самоочевидно истинны в природе . А значит, он считал, что нет разумных поводов для сомнений в том, что сумма углов реального треугольника составляет 180 градусов. И таким способом он довёл это ранее безобидное заблуждение до центрального недостатка своей философии, а именно учения о том, что определённые истины о физическом мире могут быть «известны априори», другими словами, без вмешательства науки. И, конечно же, в довершение всего под «известны» он, к сожалению, имел в виду «обоснованы».
Но ещё до того, как Кант заявил о невозможности поставить под сомнение евклидовость геометрии реального пространства, математики уже начали подозревать, что это не так. Вскоре после этого математик и физик Карл Фридрих Гаусс даже занялся измерением углов большого треугольника, но не нашёл никаких отклонений от предсказаний Евклида. В итоге эйнштейнова теория искривлённого пространства и времени, которая противоречила евклидовой, была проверена путём экспериментов более точных, чем гауссовы. Оказалось, что в пространстве рядом с Землёй углы большого треугольника в сумме могут давать 180,0000002 градуса — это отклонение от евклидовой геометрии сегодня приходится учитывать, например, в спутниковых навигационных системах. В других случаях, например вблизи чёрных дыр, различия между евклидовой и эйнштейновой геометриями настолько велики, что их уже нельзя охарактеризовать термином «отклонение».
Ещё один пример той же ошибки относится к области информатики. Изначально Тьюринг закладывал основы вычислительной теории не для того, чтобы построить компьютер, а чтобы изучать природу математического доказательства. В 1900 году Гильберт поставил математикам задачу — сформулировать строгую теорию о том, чем является доказательство, и одним из условий было то, что доказательства должны быть конечными : в них должен использоваться только фиксированный и конечный набор правил вывода; они должны начинаться с конечного числа конечно выраженных аксиом и содержать лишь конечное число элементарных шагов, причём сами шаги должны быть конечными. Вычисления, как они понимаются в рамках теории Тьюринга, по сути то же самое, что доказательства: каждое корректное доказательство можно преобразовать в вычисление, которое получает вывод, начиная с исходных допущений, а каждое правильно выполненное вычисление доказывает, что выходные данные — это результат выполнения заданных операций над входными данными.
Читать дальше
Конец ознакомительного отрывка
Купить книгу