Ричард Фейнман - Том 2. Электромагнетизм и материя

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 2. Электромагнетизм и материя» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 2. Электромагнетизм и материя: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 2. Электромагнетизм и материя»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 2. Электромагнетизм и материя», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если результат расчета будет выражен в векторной записи, то можно говорить, что он не зависит от специальной ориентации плоскости.

Мы хотим теперь найти циркуляцию поля Спо нашему квадратику. Криволинейное интегрирование легко проделать, если квадратик сделать таким маленьким, чтобы вектор Сна протяжении одной стороны квадрата менялся очень мало. (Это предположение выполняется тем лучше, чем меньше квадратик, так что на самом деле речь идет о бесконечно малых квадратиках.) Отправившись от точки ( х, у ) — в левом нижнем углу фигуры,— мы обойдем весь квадрат в направлении, указанном стрелками. Вдоль первой стороны, отмеченной цифрой 1, касательная составляющая равна С х (1), а расстояние равно Δх. Первая часть интеграла равна C x(1) Δх. Вдоль второй стороны получится С у(2) Δy. Вдоль третьей мы получим -С x(3) Δх, а вдоль четвертой -C y(4) Δy. Знаки минус стоят потому, что нас интересует касательная составляющая в направлении обхода. Весь криволинейный интеграл тогда равен

331 Посмотрим теперь на первый и третий члены В сумме они дают 332 Вам - фото 158(3.31)

Посмотрим теперь на первый и третий члены. В сумме они дают

332 Вам может показаться что в принятом приближении эта разность равна - фото 159(3.32)

Вам может показаться, что в принятом приближении эта разность равна нулю. Но это только в первом приближении. Мы можем быть более точными и учесть скорость изменения С х , тогда можно написать

333 В следующем приближении пойдут члены с Δy 2 но ввиду того что нас - фото 160(3.33)

В следующем приближении пойдут члены с (Δy) 2, но ввиду того, что нас интересует в конечном счете только предел при Δy→0, то этими членами можно пренебречь. Подставляя (3.33) в (3.32), мы получаем

334 Производную при нашей точности можно брать в точке х у Подобным же - фото 161(3.34)

Производную при нашей точности можно брать в точке ( х, у ). Подобным же образом оставшиеся два члена можно написать в виде

335 и циркуляция по квадрату тогда равна 336 Интересно что в скобках - фото 162(3.35)

и циркуляция по квадрату тогда равна

336 Интересно что в скобках получилась как раз zкомпонента ротора С - фото 163(3.36)

Интересно, что в скобках получилась как раз z-компонента ротора С . Множитель ΔxΔy— это площадь нашего квадрата. Так что циркуляцию (3.36) можно записать как

Том 2 Электромагнетизм и материя - изображение 164

Но z-компонента это на самом деле компонента, нормальная к элементу поверхности. Поэтому циркуляцию вокруг квадратика можно задать и в инвариантной векторной записи:

337 В результате имеем циркуляция произвольного вектора Спо бесконечно - фото 165(3.37)

В результате имеем: циркуляция произвольного вектора Спо бесконечно малому квадрату равна произведению составляющей ротора С, нормальной к поверхности, на площадь квадрата.

Циркуляция по произвольному контуру Γ легко теперь может быть увязана с ротором векторного поля. Натянем на контур любую подходящую поверхность S (как на фиг. 3.11) и сложим между собой циркуляции по всем бесконечно малым квадратикам на этой поверхности.

Фиг 311 Циркуляция вектора С по Γ равна поверхностному интегралу от - фото 166

Фиг. 3.11. Циркуляция вектора С по Γ равна поверхностному интегралу от нормальной компоненты вектора ∇×С.

Сумма может быть записана в виде интеграла. В итоге получится очень полезная теорема, называемая теоремой Стокса [по имени физика Стокса].

ТЕОРЕМА СТОКСА

338 где S произвольная поверхность ограниченная контуром Γ Теперь мы - фото 167(3.38)

где S — произвольная поверхность, ограниченная контуром Γ. Теперь мы должны ввести соглашение о знаках. На приведенной ранее фиг. 3.10 ось z показывает на вас, если система координат «обычная», т. е. «правая». Когда в криволинейном интеграле мы брали «положительное» направление обхода, то циркуляция получилась равной z-компоненте вектора × C. Обойди мы контур в другую сторону, мы бы получили противоположный знак. Как вообще узнавать, какое направление надо выбирать для положительного направления «нормальной» компоненты вектора × C? «Положительную» нормаль надо всегда связывать с направлением так, как это сделано было на фиг. 3.10. Общий случай показан на фиг. 3.11.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 2. Электромагнетизм и материя»

Представляем Вашему вниманию похожие книги на «Том 2. Электромагнетизм и материя» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 2. Электромагнетизм и материя»

Обсуждение, отзывы о книге «Том 2. Электромагнетизм и материя» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x