Ричард Фейнман - Том 2. Электромагнетизм и материя

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 2. Электромагнетизм и материя» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 2. Электромагнетизм и материя: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 2. Электромагнетизм и материя»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 2. Электромагнетизм и материя», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

или 324 где как всегда e rобозначает единичный вектор в радиальном - фото 143

или

324 где как всегда e rобозначает единичный вектор в радиальном - фото 144(3.24)

где, как всегда, e rобозначает единичный вектор в радиальном направлении. Этот результат говорит нам, что hпропорционален W и меняется обратно квадрату расстояния от источника.

Только что полученный результат применим к потоку тепла вблизи точечного источника тепла. Теперь попытаемся найти уравнения, которые справедливы для теплового потока самого общего вида (придерживаясь единственного условия, что количество тепла должно сохраняться). Нас будет интересовать только то, что происходит в местах вне каких-либо источников или поглотителей тепла.

Дифференциальное уравнение распространения тепла было получено в гл. 2. В соответствии с уравнением (2.44),

Том 2 Электромагнетизм и материя - изображение 145(3.25)

(Помните, что это соотношение приближенное, но для некоторых веществ вроде металлов выдерживается неплохо.) Применимо оно, конечно, только в тех частях тела, где нет ни выделения, ни поглощения тепла. Выше мы вывели другое соотношение (3.21), которое выполняется тогда, когда количество тепла сохраняется. Если мы это уравнение скомбинируем с (3.25), то получим

или 326 если ϰ величина постоянная Напоминаю что q это количество - фото 146

или

326 если ϰ величина постоянная Напоминаю что q это количество тепла в - фото 147(3.26)

если ϰ — величина постоянная. Напоминаю, что q — это количество тепла в единичном объеме, а · =∇ 2— лапласиан, т. е. оператор

Если мы теперь сделаем еще одно допущение сразу возникнет одно очень - фото 148

Если мы теперь сделаем еще одно допущение, сразу возникнет одно очень интересное уравнение. Допустим, что температура материала пропорциональна содержанию тепла в единице объема, т. е. что у материала есть определенная удельная теплоемкость. Когда это допущение верно (а так бывает часто), мы можем писать

Том 2 Электромагнетизм и материя - изображение 149

или

327 Скорость изменения количества тепла пропорциональна скорости изменения - фото 150(3.27)

Скорость изменения количества тепла пропорциональна скорости изменения температуры. Коэффициент пропорциональности c v здесь — удельная теплоемкость на единицу объема материала. Подставляя (3.27) в (3.26), получаем

328 Мы обнаружили что быстрота изменения со временем температуры Т в каждой - фото 151(3.28)

Мы обнаружили, что быстрота изменения со временем температуры Т в каждой точке пропорциональна лапласиану от Т , т. е. вторым производным от пространственного распределения температур. Мы имеем дифференциальное уравнение — в переменных х, у, z и t — для температуры Т .

Дифференциальное уравнение (3.28) называется уравнением диффузии тепла , или уравнением теплопроводности . Часто его пишут в виде

329 где D постоянная Она равна ϰc v Уравнение диффузии появляется во - фото 152(3.29)

где D — постоянная. Она равна ϰ/c v.

Уравнение диффузии появляется во многих физических задачах: о диффузии газов, диффузии нейтронов и других. Мы уже обсуждали физику некоторых таких явлений в вып. 4, гл. 43. Теперь перед вами полное уравнение, описывающее диффузию в самом общем виде. Немного позже мы займемся решением уравнения диффузии, чтобы посмотреть, как распределяется температура в некоторых случаях. А сейчас вернемся к рассмотрению других теорем о векторных полях.

§ 5. Циркуляция векторного поля

Мы хотим теперь рассмотреть ротор поля примерно так же, как рассматривали дивергенцию. Мы вывели теорему Гаусса, вычисляя интеграл по поверхности, хотя с самого начала отнюдь не было ясно, что мы будем иметь дело с дивергенцией. Откуда же можно было знать, что для ее получения надо интегрировать по поверхности? Этот результат вовсе не был очевиден. И столь же неоправданно мы сейчас вычислим другую характеристику поля и покажем, что она связана с ротором. На этот раз мы подсчитаем так называемую циркуляцию векторного поля. Если С— произвольное векторное поле, мы возьмем его составляющую вдоль кривой линии и проинтегрируем эту составляющую по замкнутому контуру. Интеграл называется циркуляцией векторного поля по контуру. Мы уже раньше в этой главе рассматривали криволинейный интеграл от ψ. Сейчас мы то же самое проделываем с произвольным векторным полем С.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 2. Электромагнетизм и материя»

Представляем Вашему вниманию похожие книги на «Том 2. Электромагнетизм и материя» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 2. Электромагнетизм и материя»

Обсуждение, отзывы о книге «Том 2. Электромагнетизм и материя» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x