
Фиг. 38.8. Интенсивность нейтронов, выходящих us стержня графита, как функция длины волны.
Значит, таким путем можно получить очень медленные нейтроны. Проникают сквозь графит только самые медленные нейтроны, они не дифрагируют, не рассеиваются на кристаллических плоскостях графита, а спокойно проходят, как свет через стекло. И нет никакого рассеяния по сторонам. Существует и множество других доказательств реальности нейтронных волн и волн других частиц.
Рассмотрим еще одно применение принципа неопределенности (38.3), но только, пожалуйста, не воспринимайте этот расчет чересчур буквально; общая мысль правильна, но анализ проделан не очень аккуратно. Мысль эта касается определения размера атомов; ведь по классическим воззрениям электроны должны были бы излучать свет и, крутясь по спирали, упасть на поверхность ядра. Но, согласно квантовой механике, это невозможно, потому что в противном случае мы бы знали, где очутился электрон и насколько быстро он вертится.
Допустим, имеется атом водорода и мы измеряем положение электрона; мы не должны быть в состоянии предвидеть точно, где он окажется, иначе расплывание импульса станет бесконечным. Всякий раз, как мы смотрим на электрон, он где-нибудь оказывается; у него есть амплитуда вероятности оказаться в различных местах, так что есть вероятность найти его где угодно. Однако не все эти места должны быть возле самого ядра; положим, что существует разброс в расстояниях порядка а, т. е. расстояние от ядра до электрона примерно в среднем равно а . Определим а, потребовав, чтобы полная энергия атома оказалась минимальной.
Разброс в импульсах, в согласии с соотношением неопределенностей, должен быть равен примерно h / а ; поэтому, стремясь измерить как-нибудь импульс электрона (например, рассеивая на нем фотоны и наблюдая эффект Допплера от движущегося рассеивателя), мы не будем получать все время нуль (электрон не стоит на месте), а будем получать импульсы порядка р ≈ h / а . Кинетическая энергия электронов примерно будет равна 1/ 2 mv 2= Р 2/2 m = h 2/2 ma 2. (To, что мы сейчас делаем, в каком-то смысле есть анализ размерностей: мы прикидываем, как кинетическая энергия может зависеть от постоянной Планка h , массы m и размера атома а . Ответ получается с точностью до численных множителей типа 2, π и т. д. Мы даже не определили как следует а .) Далее, потенциальная энергия равна частному от деления минус е 2на расстоянии от центра, скажем, — е 2/а (как мы помним, е 2— это квадрат заряда электрона, деленный на 4πε 0). Теперь смотрите: когда а уменьшается, то потенциальная энергия тоже уменьшается, но чем меньше а, тем больше требуемый принципом неопределенности импульс и тем больше кинетическая энергия. Полная энергия равна
(38.10)
Мы не знаем, чему равно a , но зато мы знаем, что атом, обеспечивая свое существование, вынужден идти на компромисс, с тем чтобы полная энергия его была как можно меньше. Чтобы найти минимум Е , продифференцируем его по а , потребуем равенства производной нулю и найдем а . Производная Е равна
(38.11)
Уравнение dE / da =0 дает для а величину
(38.12)
Это расстояние называется воровским радиусом , и мы видим, что размеры атома — порядка ангстрема. Получилась правильная цифра. Это очень хорошо, это даже удивительно хорошо, ведь до сих пор никаких теоретических соображений о размере атома у нас не было. С классической точки зрения атомы попросту невозможны: электроны должны упасть на ядра. Подставив формулу (38.12) для а 0в (38.10), мы найдем энергию. Она оказывается равной
(38.13)
Что означает отрицательная энергия? А то, что, когда электрон находится в атоме, у него энергии меньше, чем когда он свободен. Иначе говоря, в атоме он связан. И нужна энергия, чтобы вырвать его из атома; для ионизации атома водорода требуется энергия 13,6 эв . Не исключено, конечно, что потребуется вдвое или втрое больше энергии, или в π раз меньше, так как расчет наш был очень неряшлив. Однако мы схитрили и выбрали все константы так, чтобы итог получился абсолютно правильным! Эта величина -13,6 эв — называется ридбергом энергии; это энергия ионизации водорода.
Читать дальше