К счастью для Дирака, менее чем через год после его вынужденной капитуляции Карл Андерсон обнаружил в космических лучах частицы, идентичные электронам, но с противоположным зарядом. Так появился на свет позитрон, и люди слышали, как Дирак сказал в ответ на замечание по поводу его нежелания сделать выводы, прямо следующие из его же собственных математических выкладок: «Мое уравнение оказалось умнее меня!» Много позже он, говорят, дал другое объяснение тому, что не признал в свое время возможность существования новой частицы: «Чистая трусость».
«Предсказание» Дирака, хоть и сделанное практически против его воли, стало замечательной вехой. Впервые на базе чисто теоретических представлений и математических выкладок была предсказана новая частица. Подумайте об этом.
Максвелл в свое время в результате проведенного им объединения электричества и магнетизма «предсказал» задним числом существование света. Леверье предсказал существование Нептуна на базе наблюдений за аномалиями орбиты Урана. Но теперь перед нами было предсказание нового фундаментального свойства Вселенной на базе чисто теоретических рассуждений об устройстве природы на ее фундаментальнейших масштабах, без всякой предварительной прямой экспериментальной мотивации. В принципе могло показаться, что это достижение – вопрос веры, но на самом деле ни о какой вере здесь речи не шло – в конце концов, сам предсказатель в это не поверил, – и хотя, подобно вере, оно предсказывало некую ненаблюдаемую реальность, в отличие от веры, эту предсказанную реальность можно было экспериментально проверить; по идее, предсказание легко могло оказаться ошибочным.
Открытие Эйнштейном теории относительности совершило настоящую революцию в наших представлениях о пространстве и времени, а открытия Шрёдингера и Гейзенберга, связанные с законами квантовой механики, революционно изменили наши представления об атоме. Дирак первым сумел совместить то и другое и получил новое окно в скрытую природу вещества на куда меньших масштабах. Его успех ознаменовал собой начало современной эпохи в физике элементарных частиц и задал тренд, продолжавшийся почти столетие.
Во-первых, если уравнение Дирака считать применимым в более общем случае и к другим частицам, – а оснований считать, что это не так, не было никаких, – то «античастицы» (как их позже стали называть) должны иметься не только у электронов, но и у всех остальных известных в природе частиц.
Антивещество стало популярной темой научной фантастики. Звездные корабли, такие как «Энтерпрайз» в «Звездном пути», неизменно использовали антивещество в качестве топлива, а возможность создания бомб из антивещества стала самой глупой составляющей сюжета мистического триллера «Ангелы и демоны». Но само по себе антивещество реально. В космических лучах были обнаружены не только позитроны, но позже и антипротоны, и антинейтроны.
На фундаментальном уровне антивещество не представляет собой ничего особенно странного. В конце концов, позитроны точно такие же, как электроны, только заряд имеют противоположный. Они не «падают вверх» в гравитационном поле, как многие думают. Вещество и антивещество действительно могут взаимодействовать и полностью аннигилировать в чистое излучение, что выглядит как-то зловеще. Но аннигиляция по схеме частица-античастица всего лишь один из множества новых возможных видов взаимодействия элементарных частиц, которые могут иметь место, если уж мы проникаем в субатомное царство. Более того, потребовалось бы немало антивещества, чтобы энергия, полученная при его аннигиляции с веществом, хотя бы зажгла лампочку.
Однако именно в этой обычности как раз и кроется реальная странность антивещества. Его можно уверенно назвать странным, потому что Вселенная, в которой мы живем, наполнена веществом, но не антивеществом. Вселенная из антивещества выглядела бы точно так же, как наша. А вселенная, состоящая из вещества и антивещества в равных долях, что на первый взгляд, конечно, представляется самым разумным ее устройством, довольно скоро (если в промежутке не произошло бы ничего необычного) стала бы весьма скучным местом, поскольку вещество и антивещество быстро аннигилировали бы друг с другом и в такой вселенной не осталось бы ничего, кроме излучения.
Вопрос о том, почему в нашем мире много вещества, но мало антивещества, остается одним из интереснейших в современной физике. Но признание странности антивещества на том основании, что мы нигде его не встречаем, когда-то побудило меня предложить следующую аналогию. Антивещество можно назвать странным в том же смысле, в каком странными можно назвать… ну, скажем, бельгийцев. По своей природе они, конечно, не странные но если в большой лекционной аудитории попросить бельгийцев поднять руки, как однажды сделал я, то окажется, что их там почти нет.
Читать дальше
Конец ознакомительного отрывка
Купить книгу