Сотрудники Института теоретической и экспериментальной физики поняли и на опыте доказали, что по изменению поляризации мю-мезонов можно с высокой точностью определить абсолютную скорость и тип химической реакции мюония, а следовательно, и водорода с веществом. Обычными химическими способами узнать это невозможно. А для мезонного метода здесь нет никакой проблемы. Меченый радиоактивный атом мюония с помощью позитрона, который вылетает при его распаде, «сообщает» о ходе химической реакции из твердого, жидкого или газообразного образца. Это избавляет ученых от необходимости извлекать из исследуемого вещества конечный продукт химической реакции.
Иная судьба у мю-минус-мезона. Как только он затормозится в веществе, атомное ядро сразу же захватывает его на свою орбиту. Отрицательный мюон при этом играет роль «тяжелого» электрона. Так возникает мезоатом — своеобразный «изотоп» существующего в природе элемента. В химическом смысле мезоатом похож на атом реально существующего вещества, который находится в периодической таблице на одну клеточку левее вещества мишени, в которой остановился отрицательный мезон.
Группа научных сотрудников лаборатории ядерных проблем ОИЯИ несколько лет занималась вопросом: почему, образуя мезоатом, мю-мезоны в различных условиях по-разному меняют направление своих магнитных моментов? После многочисленных и разнообразных экспериментов на ускорителе физики наконец поняли, что стали первыми свидетелями интереснейшего явления — химических реакций мезоатома! В мишени, наполненной водой, атомы кислорода захватывали мю-минус-мезоны и превращались в мезоатомы, похожие на атомы азота: модели атомарного азота. И модели эти были действующими.
Атомы мезоазота сталкивались с атомами, молекулами или обломками молекул среды и быстро образовывали химические соединения. И опять у мезонов нарушалась поляризация. А чуткие приборы, регистрируя электроны, вылетающие из мишени после распада мезонов, тотчас улавливали это изменение. По нарушению же поляризации легко определить ход химической реакции.
Водород — одно из главных действующих лиц в органической химии. Почти 90 процентов всех реакций сложных технологических процессов, таких, как крекинг нефти, происходит с участием атомарного водорода. И если бы с большой точностью были известны абсолютные скорости его реакций, то с помощью ЭВМ можно было бы заранее рассчитать оптимальный вариант любого химического промышленного процесса.
На сегодняшний день это пока лишь мечта. Технология будет отлаживаться методом проб и ошибок в течение нескольких лет или даже десятилетий.
Обычными химическими методами просто невозможно выделить определенный канал химической реакции. Практически всегда реакция протекает неоднозначно, обрастая в разных установках различной «паутиной» из петель побочных реакций. Поэтому значения абсолютных скоростей реакций, полученные разными исследователями, сильно различаются. Расхождения так велики, что, как говорят химики, разница между скоростями реакций в сто раз считается хоть и плохой, но терпимой, в десять раз — удовлетворительной, а в два-три раза — вполне удовлетворительной.
Совсем в иных условиях работают физики, изучающие элементарные частицы. Их методы настолько точны, что получаемые результаты практически не зависят от условий эксперимента. Таким же качеством обладает и новый мезонный метод. С помощью мю-мезонов можно с точностью до 10 процентов определить абсолютные скорости очень быстрых химических реакций водорода и более тяжелых атомов с различными веществами и при разной температуре.
Много беспокойств доставляет химикам и другое, не менее популярное, чем водород, вещество — азот. Азотная кислота — хлеб химической промышленности. Большая химия немыслима без аммиака так же, как полет космической ракеты без гидразина.
Химические свойства атомарного азота, давно известного людям элемента, до сих пор очень плохо изучены. А связано это в первую очередь с его высокой химической активностью. Она мешает выделить механизмы его реакций, определить их количественные характеристики, столь важные для практических применений.
Теперь на помощь приходят мезоатомы. Изучая мезоатомы азота, ученые получили первые сведения о характере химического взаимодействия атомов азота с атомами водорода и молекулами перекиси водорода. С помощью электронной аппаратуры удалось установить, что в воде и водных растворах при комнатной температуре мезоазот вступает в химические реакции за ничтожно малое время, порядка 10 –11секунды. Удалось также измерить абсолютные скорости некоторых из этих реакций.
Читать дальше