Ученые обнаружили, что в реакции слияния двух легких ядер тоже выделяется огромная энергия — термоядерная. Управлять ею, однако, еще не научились. Сейчас это первоочередная практическая задача, над решением которой работают большие научные коллективы.
Для развития цивилизации важно не только получение энергии во всевозрастающих количествах, но и ее концентрация и управление ее выделением.
Первобытный человек использовал ничтожную часть энергии, заключенной, скажем, в одном килограмме вещества, когда бросал на охоте камень. Реакция деления атомных ядер тяжелых элементов — необычайно мощный, управляемый и весьма концентрированный источник энергии. Килограмм урана или плутония «заменяет» тысячи тонн лучшего химического горючего и «действие» 10 13булыжников. Это число превышает количество камней, брошенных всеми жившими когда-либо на Земле людьми!
Но в «запасниках» физиков есть кое-что еще. При встрече частицы и античастицы происходит реакция аннигиляции — «уничтожения». Электрон и позитрон исчезают, превращаясь в квант энергии. Вот она, вековечная мечта человечества о полном превращении массы вещества в энергию! Эффективность использования всей энергии, заключенной в веществе, в тысячи раз больше, чем при делении ядер. Но…
«Но пока антивещество стоит много дороже той энергии, которая выделится при его сгорании, — говорит член-корреспондент АН СССР Д. Блохинцев. — Не исключено, однако, что его можно будет использовать в качестве концентрированного топлива для космического транспорта. Но сначала, конечно, придется преодолеть трудности, связанные с хранением, транспортировкой антивещества и т. д.».
Ну а если дать простор фантазии, то далекое будущее энергетики можно представить себе так…
На астероиде или на искусственно созданной планете получается энергия по циклу системы реакций синтеза легких ядер — то, что является источником энергии нашего Солнца и множества других аналогичных звезд. В то же время на Земле энергию черпают управляемым синтезом элементарных частиц из свободных кварков, которые научились получать в любом количестве.
Безудержная фантазия? На сегодняшний день — да. Но вот что сказал о кварках академик Б. Понтекорво: «Если кварки существуют, я не сомневаюсь в том, что они могут быть использованы: стабильное „вещество“ с совершенно новыми свойствами обязательно найдет практическое применение». То же самое можно сказать и о «магнитной материи», построенной из монополей Дирака. Опять-таки — если они существуют в природе.
А уничтожить все эти и многие другие «если» могут только фундаментальные исследования в физике высоких энергий, в физике элементарных частиц.
Универсальные машины
Предсказание будущего всегда было делом нелегким и неблагодарным. Действительность оказывалась намного богаче и значительней, чем это представлялось в прогнозах. И последующие поколения чаще всего удивлялись бескрылой фантазии предшественников.
Сейчас нам трудно понять, как мог Э. Резерфорд всего за год-два до открытия реакции деления ядер сомневаться в возможности какого-либо применения ядерной энергии.
Но вопрос о сегодняшней пользе физики элементарных частиц можно рассматривать не только в плане туманных обещаний, но и конкретных реальных применений.
В 1950 году в американском журнале была опубликована статья известного физика, лауреата Нобелевской премии Е. Вигнера, в которой была такая строчка: «Наша наука с большим успехом увеличивает нашу мощь, чем наделяет нас знаниями, представляющими чисто человеческий интерес».
Сейчас, двадцать с лишним лет спустя, с этими словами нельзя согласиться. Даже если не считать открытия атомного источника энергии, физика элементарных частиц пришла бы на смотр наук, полезных человеку, не с пустыми руками.
Накануне I Международной конференции по мирному использованию атомной энергии 1955 года собралась сессия Академии наук СССР, посвященная этим же проблемам. Академик А. Несмеянов уже тогда сказал, что «атомная промышленность дает науке, и технике радиоактивные элементы, излучения которых используются в медицине для лечения и диагностики, находят применение в пищевой промышленности, автоматике, дефектоскопии, горной разведке и во множестве других направлений. Химия и физика, металлургия, механика газообразного, жидкого и твердого тела и особенно биология с ее богатством областей и направлений, начиная от физиологии высшей нервной деятельности и кончая агрономией, стали широким полем применения меченых атомов, позволили ввести новые методы работы, сделать новые открытия».
Читать дальше