Маркус Чаун - Гравитация. Последнее искушение Эйнштейна

Здесь есть возможность читать онлайн «Маркус Чаун - Гравитация. Последнее искушение Эйнштейна» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2017, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. Последнее искушение Эйнштейна: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. Последнее искушение Эйнштейна»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Разгадав тайну гравитации, мы сможем ответить на величайшие вопросы науки: что такое пространство? Что такое время? Что такое Вселенная? Откуда все это взялось?
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.

Гравитация. Последнее искушение Эйнштейна — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. Последнее искушение Эйнштейна», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Следовательно, для того чтобы квантовое описание гравитации было возможным, должна существовать частица — переносчик гравитационного взаимодействия. Теоретики окрестили эту гипотетическую частицу гравитоном, хотя даже само её существование остаётся под сомнением из-за множества связанных с ней затруднений. К примеру, сила взаимодействия зависит от того, как часто переносчики вступают в контакт с частицами, способными «почувствовать» силу. Но гравитационное взаимодействие очень слабо по сравнению с другими силами (например, сила притяжения между протоном и электроном в атоме водорода в 10 000 миллиардов миллиардов миллиардов миллиардов раз слабее, чем электромагнитная сила). А это значит, что гравитоны почти никогда не контактируют с материей. Для того чтобы столкнуться с гравитоном, детектору массой с планету Юпитер потребовалось бы больше времени, чем существует Вселенная. [241] Rothman T., Boughn S. Can gravitons be detected? — 2008. — arXiv:gr-qc/0601043v3 .

Но даже если не учитывать проблему с гравитонами, объединить теорию гравитации Эйнштейна с квантовой теорией всё равно очень сложно. Кажется, будто они совершенно несовместимы. Общая теория относительности говорит об определённости и предсказывает будущее со 100%-ной точностью, в то время как квантовая теория описывает вероятность существования множества альтернативных вариантов будущего. Однако, как верно замечает Дэвид Тонг из Кембриджского университета, несмотря на это, физики сумели предложить квантовое описание для всех прочих фундаментальных сил природы.

Квантовая теория отрицает само существование точных местоположений в пространстве и траекторий тел, которые по нему движутся, а ведь именно эти величины являются краеугольным камнем теории гравитации Эйнштейна. Более того, квантовая теория рассматривает Вселенную на микроуровне как дискретную, в то время как для теории гравитации она непрерывна. Если и этих аргументов вам недостаточно, подумайте вот о чём: негравитационные силы Вселенной действуют в пространстве-времени, в то время как гравитация сама является пространством-временем. «Это различие может показаться несущественным, — пишет Тонг, — но чувствуется, что с гравитацией всё же что-то не так».

Планковская длина важна не только потому, что на ней сила гравитационного взаимодействия становится сравнимой с другими силами и, соответственно, требует квантового объяснения. Согласно квантовой теории, на длине Планка квантовые флуктуации так велики и локализованы, что, когда энергия возникает из ниоткуда, это происходит в пределах её собственного горизонта событий . Иными словами, она тут же схлопывается, формируя чёрную дыру. Очевидно, что это звучит нелепо. Если бы подобное действительно происходило, то пространство-время на планковской длине было бы постоянно скрыто от нашего взора внутри чёрной дыры, а крошечные чёрные дыры то и дело возникали бы вокруг нас в воздухе.

Судя по всему, не только общая теория относительности предсказывает существование сингулярности. Квантовая теория тоже содержит бессмысленное предположение о спонтанном самозарождении чёрных дыр. Единственное различие состоит в том, что планковская длина, несмотря на её крошечные размеры, намного больше нулевой длины сингулярности. Судя по всему, новая теория, которая объединит общую теорию относительности и квантовую теорию, может потребовать внесения фундаментальных изменений и в ту и в другую.

Выход есть — и даже без экспериментов

Самый очевидный способ создать новую квантовую теорию гравитации — это исследовать микромир в тех невероятно малых масштабах, в которых теория Эйнштейна перестаёт работать, а время и пространство утрачивают смысл. «В конце концов, всё решают эксперименты, а для того, чтобы их провести, нам нужно изучить мир в пределах планковской длины», — говорит Аркани-Хамед.

Но невероятно малые масштабы означают огромную энергию. Чтобы вы лучше понимали контекст, давайте вспомним, что в Большом адронном коллайдере, построенном неподалёку от Женевы, разогнанные частицы могут сталкиваться с энергией 10 000 гигаэлектрон-вольт. [242] Электронвольт (эВ) — это уровень энергии, приобретаемой электроном после разгона под воздействием 1 вольта. Гигаэлектронвольт (ГэВ) больше его в миллиард раз. В пределах планковской длины энергия будет составлять десять миллиардов миллиардов гигаэлектрон-вольт, то есть окажется в миллион миллиардов раз выше, чем та, которую человечество может получить в БАК. Для того чтобы сгенерировать такую энергию с помощью доступных на сегодняшний день технологий, потребуется кольцо-ускоритель с диаметром, примерно равным 1/10 диаметра Млечного Пути. Возможно, где-то во Вселенной и существует цивилизация, которой удалось превратить 10% соседней галактики в очень большой адронный коллайдер, но это кажется маловероятным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. Последнее искушение Эйнштейна»

Представляем Вашему вниманию похожие книги на «Гравитация. Последнее искушение Эйнштейна» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Гравитация. Последнее искушение Эйнштейна»

Обсуждение, отзывы о книге «Гравитация. Последнее искушение Эйнштейна» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x