Теоретически в этой последовательности нет предела (навес пропорционален логарифму количества костяшек в башне — его можно сделать любым), есть только предел, задаваемый здравым смыслом.
Более рациональный метод состоит в том, чтобы на выступающие за кромку стола костяшки сверху ставить другие костяшки так, чтобы они служили противовесом. Укладывая в стопку четыре костяшки домино первым способом, можно обеспечить навес чуть больше L (рис. 1.22б), а вторым — с помощью всего 63 костяшек можно получить навес, равный 3 L .
Использование метода противовесов помогает и в сооружении арки из 28 костяшек. Если левая и правая части арки уравновешены, пролет может составить 3,97 L . Существует по крайней мере один метод строительства арки, при котором обе стороны ее не уравновешены, а пролет равен примерно 4,35 L .
Все навесы и арки можно сделать еще длиннее, если укладывать костяшки так, чтобы перпендикулярны к кромке стола были не длинные их стороны, а диагонали.
Из трех деталек «лего» можно построить пять разных типов башен (зеркально-симметричные варианты исключаются), и четыре из них абсолютно устойчивы. Одна башня ограниченно устойчива — легчайший толчок обрушит ее, поскольку центр масс лежит на линии, проходящей через край нижнего кубика. Максимальный навес в ограниченно устойчивой башне равен длине детали, то есть 2 х , а для других трех башен — половине длины детали, то есть х . Для наиболее устойчивой — вертикальной — башни (когда детали просто стоят друг на друге) навес равен нулю.
Правила, по которым можно строить наклонную башню, определяют выбор нужной стратегии для получения максимального навеса. Допустим, они таковы, что вы не рассматриваете ограниченно устойчивые башни и должны либо просто ставить одну деталь на другую, либо укладывать ее только со сдвигом вправо. Тогда наиболее экономный метод строительства состоит в том, чтобы все детали, кроме верхних, просто ставить друг на друга — так, чтобы они образовали фундамент для «лестницы», идущей вправо. Например, чтобы получить навес в две длины детали (4 х ), вам понадобится минимум 11 деталей, из которых четыре верхних укладываются ступеньками (рис. 1.22в). Чтобы получить навес в nx , вам понадобится минимум 0,5 n ( n + 1) + 1 деталей, из которых n верхних образуют лестницу. (Для постройки ограниченно устойчивой башни можно убрать часть нижних деталей.)
Чтобы построить башню с заданным навесом и при этом использовать меньшее количество деталей, сначала укладывайте их со сдвигом влево, а потом вправо. Например, из 11 деталей можно построить устойчивую башню с навесом в 2,5 длины детали, то есть 5 х (рис. 1.22 г).
1.67. Падающая пизанская башня
Знаменитая башня в итальянском городе Пиза начала крениться на южную сторону еще во время строительства, которое растянулось на два века. А когда наконец дело дошло до самой звонницы, ее поставили вертикально в надежде приостановить дальнейший наклон всей башни.
Пизанскую башню закрыли для туристов на многие годы после того, как упала башня в Падуе, убив при этом четырех человек. Но действительно ли знаменитая падающая башня была на волосок от падения? Максимальный угол ее наклона составил чуть более 5°, и хотя наклон с каждым годом увеличивался, этот прирост не превышал 0, 001° в год. Разве башня может упасть, если ее центр масс находится над основанием? А у Пизанской башни он бы вышел за его границы еще не скоро.
ОТВЕТ •Хотя наклон башни всегда был небольшим и проекция ее центра масс не покидала центральной части фундамента, перед недавно проводившимися реставрационными работами выяснилось, что наклон вызвал увеличение нагрузки на южную стену. Это увеличение привело к чудовищному давлению на нижние секции этой стены, а это угрожало тем, что стена могла выпятиться наружу и рухнуть. Опасность возрастала еще и из-за того, что спиральная лестница проходила по внешней стороне башни, а это уменьшало прочность всей конструкции. Наклон возник из-за рыхлости почвы под башней, и ситуация ухудшалась после каждого ливня. Чтобы стабилизировать башню и слегка уменьшить наклон, инженеры соорудили под башней дренажную систему для отвода воды и вынули грунт из-под северной части башни.
Как только первая костяшка домино из длинного ряда стоящих вертикально на одинаковом расстоянии друг от друга костяшек упадет на соседнюю, падения распространятся, как волна, по всему ряду. Сколько костяшек будет находиться в движении в каждый произвольный момент времени уже после того, как волна пошла, и чем определится скорость распространения этой волны? Расстояние между костяшками, естественно, не должно превышать длину каждой из них. А есть ли еще какой-то параметр, определяющий минимальное расстояние? Почему детские кубики не падают так же, как костяшки? Возникнет ли цепная реакция в ряду костяшек, если первая костяшка маленькая, а каждая следующая больше предыдущей в некоторое количество раз?
Читать дальше
Конец ознакомительного отрывка
Купить книгу