Сегодня модифицированная гравитация согласуется не со всеми космологическими данными, равно как и согласованная космологическая модель. Возможно, дело в том, что этот подход неверен. Но не исключено, что просто мало кто пытается согласовать модифицированную гравитацию с данными.
* * *
«А что думаете вы? – спрашивает Кэти в конце нашего разговора. – Считаете ли вы, что мы отыщем более красивые и простые модели?»
И тогда я осознаю, что из всех, с кем я говорила, никто больше не спросил моего собственного мнения. И я этому рада, поскольку ответа на вопрос у меня не было бы.
Но за время моих странствий мне стало ясно, что я не упускаю какое-то обоснование того, почему коллеги полагаются на красоту. Такого обоснования попросту нет. Как бы мне ни хотелось верить, что законы природы красивы, не думаю, что наше чувство прекрасного – надежный руководящий принцип; напротив, оно отвлекает наше внимание от других, более насущных вопросов. Вроде того, на который указал Стивен Вайнберг, – связанного с появлением макроскопического мира. Или, как напомнил мне Вэнь Сяоган, – с нашим непониманием квантовой теории поля. Или, как показывает ситуация с мультивселенной и естественностью, – с нашим непониманием того, что применительно к закону природы означает быть вероятным.
И я отвечаю Кэти, что, да, думаю, у природы припасено для нас еще много красоты. Только вот красоту, как и счастье, нельзя найти, просто жалуясь на ее отсутствие.
Призрачные поля и пятые силы
Есть еще один способ постулировать новую физику и тут же припрятать ее в рукаве – ввести поля, которые становятся значимыми либо только на очень больших расстояниях, либо только в очень ранней Вселенной, а и то и другое проверить трудно. Подобные изобретения сегодня допустимы, поскольку тоже объясняют численные совпадения.
В общей теории относительности космологическая постоянная – свободный параметр. Это означает, что нет никакого глубинного принципа, исходя из которого можно было бы вычислить ее значение, – оно должно быть определено экспериментально. Ускоряющееся расширение Вселенной показывает, что космологическая постоянная положительна и ее значение относится к масштабу энергий, сравнимых с массой самого тяжелого из известных нейтрино. Таким образом, для специалистов по физике элементарных частиц это очень маленькие энергии (см. рис. 14) [104] Если вы справитесь о значении космологической постоянной (Λ), то увидите, что сейчас оно оценивается примерно в 10 –52 /м 2 . Но специалисты по физике элементарных частиц под масштабом космологической постоянной имеют в виду другое. Они берут связанную с космологической постоянной плотность энергии, равную c 4 Λ/ G (где G – гравитационная постоянная, с – скорость света), делят ее на ℏ и с и извлекают из получившегося выражения корень четвертой степени, что дает примерно 10 4 /м, или, если вычислить обратную величину, масштаб расстояний около 1/10 мм. В терминах масштаба расстояний расхождение с планковской длиной – примерно 30 порядков (см. рис. 14). В терминах плотности энергии – это различие надо возвести в четвертую степень – получается расхождение на 120 порядков (его приводят чаще, но оно несколько сбивает с толку).
.
Если космологическая постоянная ненулевая, значит, пространство-время, не содержащее никаких частиц, уже не плоское. Поэтому космологическая постоянная часто интерпретируется как вакуум с ненулевыми плотностью энергии и давлением.
Общая теория относительности ничего не говорит нам о значении космологической постоянной. В квантовой теории поля, однако, мы можем вычислить плотность энергии вакуума – и она оказывается бесконечно большой. Но в отсутствие гравитации это не важно: мы все равно никогда не измеряем абсолютные значения энергий, мы измеряем лишь разницу энергий. В Стандартной модели без гравитации мы можем, таким образом, использовать нужные математические процедуры, чтобы избавиться от бесконечности и получить физически осмысленный результат.
Но в присутствии гравитации бесконечный вклад становится физически значимым, ведь он вызвал бы бесконечное искривление пространства-времени. А это определенно не имеет смысла. Дальнейшая проверка, по счастью, показывает, что энергия вакуума ничем не ограничена, только если экстраполировать Стандартную модель в область бесконечно высоких энергий. А поскольку мы ожидаем, что эта экстраполяция будет нарушаться при планковской энергии (самое позднее), энергия вакуума должна быть степенью планковской энергии. Уже лучше – теперь энергия вакуума по крайней мере конечна. Но все же слишком велика, чтобы согласовываться с наблюдениями. Такая огромная космологическая постоянная давным-давно разорвала бы нас в клочья или схлопнула бы обратно Вселенную.
Читать дальше
Конец ознакомительного отрывка
Купить книгу