В 1906 году Больцман вернулся домой в Вену из Калифорнии, не зная о работе Эйнштейна; позже в этом году Больцман покончил с собой после многих лет борьбы с приступами депрессии. Работа Эйнштейна, содержавшая доказательства существования атомов и принимавшая во внимание кинетическую энергию, подходила к поведению вещества статистически и действительно понравилась бы Больцману (а также Максвеллу и Клаузиусу).
Строение атома: части частиц
Атом всегда был синонимом неизменного, неразрушимого и неделимого . Его представляли как самую маленькую частицу материи, из которой состоит окружающий мир. Однако сегодня мы знаем, что атомы состоят из отрицательно заряженных электронов, положительно заряженных протонов и незаряженных нейтронов. Большая часть массы атома приходится на ядро, которое состоит из нейтронов и протонов (за исключением атома водорода, который содержит всего один протон в ядре). Остальная часть атома состоит из крошечных электронов — один электрон в 1836 раз легче, чем протон (у протона и нейтрона примерно одинаковая масса).
Одна из наиболее ранних моделей строения атома предполагала положительно заряженное ядро в центре, в то время как электроны перемещались по орбитам вокруг него. Между орбитами электронов и ядром имеется большое количество свободного места (это правда, атом состоит из большого объема пустоты). В части 4 мы увидим, что эта модель атома помогает понять его природу, хотя она и была изначально некорректна. Таким образом, атом оказался сложнее, чем думали первоначально. Действительно, атом — элементарная составляющая вещества, но даже у нее есть собственная внутренняя структура.
Появление правильного описания этой структуры стало проблемой для методов классической физики, которая показала явные недостатки, при работе со «слишком маленькими частицами». Требовался совершенно новый способ описать не только вещество, но даже, например, свет. Понимание «неизменного» атома в значительной степени изменило все и ознаменовало новую эру физики и рождение квантовой механики .
Часть 4
Неопределенность: квантовая механика
Глава 13
Дискретный
Хитрый секрет энергии
Чем больший успех приобретает квантовая механика, тем глупее она выглядит. Как бы насмехались над ней обыватели, если бы имели возможность проследить ее своеобразное развитие!
Альберт Эйнштейн, немецкий физик (1879–1955)
К 1900 году мы прошли большой путь в понимании энергии. Первый закон, установленный около 1850 года, гарантировал, что вся энергия сохраняется: она никогда не создается из ничего, не исчезает, а просто переходит из одной формы в другую.
Сейчас нам понятно, что теплота — именно форма энергии, а не какая-то невесомая жидкость , когда-то известная как теплород . Существование атомов как фундаментальных составляющих материи приобретало всеобщее признание, помогая вновь подтвердить сформулированное гораздо раньше предположение, что теплота является результатом их движения. В самом деле, кинетическая теория и статистическая механика принесли результаты, согласующиеся с экспериментами, предположив само существование атомов. Через работы Максвелла и, особенно, Больцмана связь между макроскопическим миром, который мы видим вокруг нас, и микроскопическим миром атомов, который мы непосредственно не наблюдаем, становилась яснее. «Сообщницу» энергии, энтропию, четко доказывало второе начало термодинамики. А Больцман показал, что связь энтропии с атомами заключена в наборе расположений, или микросостояний , которые атомы переживают, двигаясь, с течением времени; чем больше расположений, или микросостояний, доступно системе атомов, тем больше ее энтропия. Ах, да, наше понимание энергии и ее спутников выглядело весьма полным. К сожалению, это и близко не было верным.
Когда объект нагрет, происходит нечто довольно интересное. Помимо того, что он становится горячим, он также светится, или дает тепловое излучение . Многие из нас, вероятно, знакомы с тем, как меняет цвет нагревательный элемент электрической печки, когда он становится горячее, начиная с тускло-красного и потом алея с повышением температуры. На самом деле, если бы мы были способны повысить температуру еще больше, то обнаружили бы, что свечение нагревательного элемента переходит от красного к более голубому.
Читать дальше
Конец ознакомительного отрывка
Купить книгу