Температурные флуктуации фонового излучения демонстрируют и другие пики с более скромными амплитудами, которые наблюдаются на меньших угловых размерах. Причины их неодинаковы, и они тоже зависят от различных космологических параметров. Например, чем больше во Вселенной барионного вещества, тем выше амплитуда первого пика (и других пиков с нечетными номерами) и тем ниже она для второго, четвертого и прочих четных пиков. На совсем малых масштабах (менее пяти угловых секунд) первичные анизотропии сглаживаются благодаря эффекту Силка.
ВЕЛИКИЙ КОНКОРДАНС И ЕГО ПРЕДЕЛЫ
В нашем столетии львиную долю информации о спектрах реликтового излучения ученые получили с помощью космических обсерваторий WMAP и Planck. Обе станции несли на борту уникальную аппаратуру, которую смело можно назвать техническим чудом космического приборостроения. Кроме того, реликтовое излучение наблюдали с помощью специализированных наземных телескопов нового поколения и приборов, поднятых в стратосферу высотными аэростатами. Каждый из этих экспериментов заслуживает отдельной статьи, а некоторые — даже книги. В совокупности они неизмеримо расширили и уточнили полученные в прошлом веке сведения о реликтовом излучении. В обозримом будущем подобные наблюдения будут продолжаться.
Их главные результаты общеизвестны. Абсолютное большинство специалистов согласно, что космическое пространство на макромасштабах обладает нулевой или почти нулевой кривизной и потому очень точно описывается геометрией Евклида. Общая плотность энергии Вселенной приблизительно на 4,5 % обеспечена обычным (барионным) веществом, на 25 % — холодной (то есть движущейся с небольшими скоростями) темной материей и примерно на 70 % — темной энергией (чью плотность по традиции обозначают заглавной греческой буквой Λ). Очень малую дополнительную долю этой плотности составляют кванты реликтового излучения и звездного света, потоки нейтрино и гравитационные волны. Барионное вещество в основном сосредоточено не в звездах и планетах, а в плазменном наполнении внутригалактического и межгалактического пространства. Эти утверждения составляют основное содержание стандартной космологической модели.
Вселенная с момента своего возникновения расширяется, причем неодинаковыми темпами. Нынешняя скорость ее расширения определяется современным значением параметра Хаббла H 0, который, согласно последним данным с обсерватории Planck, равен 67,4 км/с на мегапарсек [61] Adam G. Riess et al. Large Magellanic Cloud Cepheid Standards Provide a 1 % Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond ΛCDM // Astrophysical Journal (7 May 2019), 876 (1).
(с погрешностью менее чем 1 %). Благодаря доминирующей роли темной энергии скорость расширения Вселенной возрастает и будет возрастать в обозримом будущем. Нынешний возраст Вселенной округленно равен 13,8 млрд лет.
Эту стройную картину нарушают расхождения в определении численной величины H 0, возникшие после публикации результатов серии телескопических наблюдений переменных звезд из семейства цефеид и сверхновых типа Ia. Согласно недавним результатам группы под руководством Адама Рисса, H 0= (74,02 ± 1,42) км/с на мегапарсек. Причина столь заметной нестыковки служит предметом ожесточенных дискуссий, однако большинство астрофизиков считает оценку на основе анализа спектров реликтового излучения более надежной.
А дальше — посмотрим. В настоящее время различные научные коллаборации разрабатывают и испытывают новые методы оценки H 0, не связанные ни с анализом спектров микроволнового фонового излучения, ни с апелляцией к данным звездной астрономии. Эти методы еще недостаточно точны, однако имеют немалые перспективы. Вполне возможно, что уже в следующем десятилетии с их помощью астрономы и астрофизики наконец-то договорятся о точном значении параметра Хаббла.
Advanced Gravitational Wave Detectors, ed. by D. E. Blair et al, Cambridge University Press, Cambridge, 2012, p. 105.
Walter Adams, S. The Spectrum of the Companion of Sirius // Publications of the Astronomical Society of the Pacific (1915) , 27 (161): 236–237.
Hertzsprung, E. Zur Strahlung der Sterne. I // Zeitschrift für wissenschaftliche Photographie, Photophysik und Photochemie (1905).
Hertzsprung, E. Zur Strahlung der Sterne. II // Zeitschrift für wissenschaftliche Photographie, Photophysik und Photochemie (1907).
Hertzsprung, E. Über die Verwendung Photographischer Effektiver Wellenlaengen zur Bestimmung von Farbenaequivalenten, Publikationen des Astrophysikalischen Observatoriums zu Potsdam, 22. Bd., 1. Stuck = Nr. 63.
Proceedings of the American Philosophical Society (Oct. — Dec., 1912), 51 (207): 569–579.
Читать дальше
Конец ознакомительного отрывка
Купить книгу