Электронный распад ядра.Мы видели, что многие ядерные превращения сопровождаются вылетом электронов.
Возникает законный вопрос: откуда же берутся электроны в ядре? Ведь ядро состоит только из протонов и нейтронов.
Остается предположить, что электрон рождается в ядре в момент его превращения. При распаде, например, трития, в ядре которого один протон и два нейтрона, получается электрон и ядро изотопа гелия 3, содержащее два протона и один нейтрон. Выходит, что при излучении электрона из ядра один из нейтронов превратился в протон.
«Ну что же здесь странного? — скажете вы. — Очевидно, нейтрон — сложная частица и состоит из протона и электрона».
Но факты опровергают это предположение.
Есть много ядер, которые излучают при распаде не электроны, а положительно заряженные частицы — позитроны. Так, например, азот 13, о котором упоминалось раньше, является радиоактивным изотопом. Его ядро, излучая позитрон, переходит в ядро углерода 13:
Азот 13→углерод 13+позитрон,
то есть вместо семи протонов и шести нейтронов в новом ядре будет уже шесть протонов и семь нейтронов. Здесь мы имеем превращение протона в нейтрон и позитрон. Становится ясным, что представление о том, что нейтрон состоит из протона и электрона, несовместимо с существованием радиоактивности, с образованием позитрона.
Современная теория утверждает, что протоны и нейтроны в процессе их взаимодействия в ядре могут превращаться друг в друга с испусканием электрона или позитрона. Эти частицы и излучаются ядром при радиоактивном распаде.
Что же происходит с ядром после этого?
Излучение электрона связано с тем, что один из нейтронов превращается в протон, что, естественно, приводит к увеличению положительного заряда ядра. Мы получаем ядро следующего элемента периодической системы. Например, при распаде трития (изотопа водорода) образуется изотоп гелия.
В случае позитронной радиоактивности, наоборот, протон превращается в нейтрон, ядро теряет положительный заряд, равный заряду протона, и номер элемента становится на единицу меньше. Это происходит, например, при превращении азота 13в углерод 13.
Однако в поведении радиоактивного ядра при испускании электрона и позитрона есть что-то странное. В каждом подобном акте ядро теряет вполне определенную энергию. Можно ожидать, что энергия (или скорость) всех электронов (или позитронов), испускаемых ядрами этого сорта, будет одинакова. Физики сумели измерить эту энергию, и неожиданно оказалось, что излучаемые электроны обладают самыми различными энергиями — от очень малой до максимальной энергии, теряемой радиоактивным ядром.
Тут обнаружилось какое-то неблагополучие. Ядро передает электрону совершенно определенную энергию. Но в процессе этой передачи часть энергии где-то пропадает.
Явное несоответствие с законом сохранения энергии, который утверждает, что энергия никогда не возникает и не пропадает!
Но, может быть, часть энергии уносят с собой гамма-кванты, часто сопровождающие испускание электрона или позитрона?
Однако измерения показали, что гамма-квант уносит с собой всегда определенную часть энергии и испускается позже электрона. Кроме того, энергия, теряемая ядром, всегда равна сумме энергии гамма-кванта и максимальной энергии электрона.
А если вылетевший электрон не обладает максимальной энергией, то куда же девается ее часть, недостающая до максимальной?
Может быть, можно объяснить странное поведение радиоактивного ядра, если предположить, что из него одновременно вылетают два электрона?
Действительно, в этом случае у каждого из электронов может быть самая различная энергия. Сумма этих энергий должна быть равна энергии, теряемой ядром. Однако такое предположение сразу же опровергается тем обстоятельством, что ядро при электронном или позитронном распаде всегда теряет или приобретает заряд, соответствующий одному элементарному заряду.
Такое положение привело к тому, что реакционно настроенная часть зарубежных физиков снова стала утверждать, что закон сохранения энергии — один из самых фундаментальных законов природы — не выполняется в атомных и ядерных процессах.
Очень скоро было показано, что для того чтобы устранить все сомнения, достаточно предположить, что одновременно с электроном (позитроном) вылетает еще одна нейтральная частица — нейтрино, которая и уносит с собой недостающую часть энергии. Таким образом, взаимопревращение нейтрона и протона можно записать следующим образом:
Читать дальше