Над поверхностью нагретой воды вы всегда наблюдаете туман. Это то, что в нашей практике не совсем верно называют паром. Капельки тумана состоят из большого числа молекул и образуются при конденсации паров после выхода с поверхности жидкости. Примерно то же наблюдается в ядерных реакциях. Часто вылетают не отдельные частицы, а целое ядро, состоящее из четырех ядерных частиц, — альфа-частица. Правда, аналогия здесь не совсем полная. Альфа-частица, по-видимому, образуется внутри ядра, а капли тумана — после выхода молекул с поверхности жидкости.
После вылета какой-нибудь частицы ядро охлаждается так же, как охлаждается при усиленном испарении жидкость. Как на испарение жидкости, так и на вылет частицы затрачивается энергия. В том случае, когда ядро обладает большой остаточной энергией, возможен вылет второй частицы. Но если остатка энергии не хватает для удаления второй частицы, ядро охлаждается испусканием света — гамма-излучением.
Не все частицы легко могут проникнуть в положительно заряженное ядро атома. Протону или альфа-частице, несущим положительные заряды, нелегко подойти к одноименно заряженному ядру. Сильное электростатическое поле ядра будет отталкивать такую частицу. Преодолеть электростатические силы и попасть в область действии ядерных сил может только достаточно быстрая, обладающая большой энергией заряженная частица.
Очень долго физики пользовались альфа-частицами, выбрасываемыми ядрами радиоактивных элементов при естественном их распаде. Однако для осуществления многих ядерных реакций необходимы элементарные частицы с большими энергиями, которые при радиоактивных превращениях не получаются. Чтобы получить частицы с бóльшими энергиями, надо сообщить им большие скорости движения.
Ускоренные заряженные частицы можно получать в так называемых ускорителях и этими быстрыми частицами бомбардировать ядра различных веществ. Часть заряженных частиц попадает в атомные ядра и производит ядерные реакции.
Например, быстрый протон, попадая в ядро легкого элемента лития, совершает следующую реакцию (рис. 7):
Литий 7+водород 1→бериллий 8→гелий 4+гелий 4.
Рис. 7.Схема ядерной реакции:
Водород 1+литий 7→бериллий 8→гелий 4+гелий 4
Ядро лития содержит три протона и четыре нейтрона. После его слияния с протоном мы будем иметь новое ядро, содержащее восемь частиц (четыре протона и четыре нейтрона). Это уже изотоп бериллия с массовым числом, равным восьми. Но ядро бериллия 8неустойчиво и очень быстро распадается на две альфа-частицы (ядра гелия). При этом освобождается большое количество энергии.
После открытия в 1932 году Жолио-Кюри и Чадвиком нейтронов исследователи получили новое мощное средство для осуществления ядерных реакций. Нейтроны — незаряженные частицы, и на них не действуют электрические силы. Поэтому подойти к ядру и произвести ядерное превращение могут даже очень медленные нейтроны. Больше того, очень часто медленные нейтроны гораздо активнее, чем быстрые, производят ядерные превращения. Такие нейтроны находятся вблизи ядра большее время и поэтому легче захватываются ядерными силами ядра.
При захвате ядром нейтрона получается новое ядро, и так как нейтрон не имеет заряда, оно остается ядром изотопа первоначального химического элемента.
Даже самый медленный нейтрон, «упавший» под действием ядерных сил в ядро, приносит с собой значительную энергию. В результате захвата нейтрона ядро «нагревается». Охлаждение полученного ядра может, как мы уже говорили, проходить несколькими способами: из него выбрасывается одна или две частицы или испускаются гамма-лучи.
Например, целый ряд реакций с нейтроном дает ядро азота. На быстрых нейтронах может идти реакция с испусканием альфа-частицы:
Азот 14+нейтрон 1→азот 15→бор 11+гелий 4.
Может идти также реакция, где из ядра азота 15вылетают две частицы. Происходит как бы размножение нейтронов:
Азот 14+нейтрон 1→азот 15→азот 13+2 нейтрона 1.
На медленных нейтронах очень часто происходит такая реакция:
Азот 14+нейтрон 1→азот 15→углерод 14+водород 1.
Эта реакция интересна тем, что дает нам искусственное радиоактивное вещество — углерод 14с периодом полураспада 5100 лет:
Углерод 14→азот 14+электрон.
В результате обоих ядерных превращений мы опять получим ядро азота 14. Но вместо захваченного нейтрона из ядра вылетели протон (водород 1) и электрон.
Читать дальше