Перечислим главные направления, по которым идет развитие теоретической физики.
Это прежде всего получение количественных соотношений между наблюдаемыми величинами. Так, пользуясь законами движения электронов в металле, теоретики рассчитали кривую зависимости электрического сопротивления от температуры и объяснили природу сверхпроводимости.
Еще одно направление - обсуждение и теоретический расчет физических экспериментов. Работающие в этом направлении теоретики обычно не только рассчитывают, но и предлагают эксперименты, которые особенно важны для развития теории. В связи с увеличением стоимости опытов это направление делается все более важным.
Прикладная физика занимается проблемами, которые в обозримом будущем могут привести к практическим применениям. Например, одна из важнейших задач прикладной физики - проблема создания высокотемпературной сверхпроводимости или получение управляемой термоядерной реакции.
Следующий путь - создание адекватных методов математического описания законов природы. Сюда входят использование и развитие тех методов математики, которые позволяют выявить свойства симметрии законов природы. Количественное завершение идей общей теории относительности (теории тяготения) стало возможным только в результате применения методов описания геометрических свойств, изменяющихся от точки к точке. Для многих задач теоретической физики наиболее подходящий способ - решение с помощью ЭВМ.
И наконец, самое главное в экспериментальной и теоретической физике - поиски общих принципов, лежащих в основе законов природы, таких, как причинность, законы сохранения, свойства симметрии мира…
Итак, задача физики - намечать пути к пониманию единства, симметрии и динамики явлений, пути к пониманию красоты Вселенной, к использованию законов природы на благо человечества.
КАК СОЗДАВАЛАСЬ КВАНТОВАЯ ТЕОРИЯ?
Стану ли я отказываться от своего обеда только потому, что я не полностью понимаю процесс пищеварения?
О. Хэвисайд (один из создателей операционного исчисления)
Яркое представление о работе физиков дает история зарождения и развития квантовой теории. Мы увидим в действии множество методических особенностей научной работы, о которых говорилось в главе «О психологии научного творчества». Но, может быть, самое интересное, что все важнейшие результаты теории возникали до того, как становился ясен физический смысл сделанных предположений! Понимание возникало постепенно, по мере продвижения вперед.
Вы уже могли заметить из наших кратких обсуждений, что частная теория относительности и теория тяготения создавались совсем иначе. Там глубокие и ясные физические идеи предшествовали законченной теории. Может быть, это был последний взлет классической науки прошлого века.
Для XX века характерно именно движение вперед без прочных оснований, через смутные догадки, которые постепенно уточняются и заменяются другими. Словом,
метод проб и ошибок, который мы уже прослеживали на примере открытия кварков. В рассказах о важных открытиях обычно не говорят о неправильных догадках или говорят вскользь, и история науки представляется сплошной чередой оправдавшихся озарений. Разумеется, это не так. Было много блужданий в потемках, путь часто уводил в сторону… Когда обнаружили кажущееся несохранение энергии при \beta-распаде, до того, как стало ясно, что часть энергии уносит нейтрино, некоторые физики предполагали, что закон сохранения энергии нарушается в отдельных актах и выполняется только в среднем.
Конечно, анализ удач приносит больше, чем изучение ошибок. Мы не занимаемся сейчас историей физики, а лишь пытаемся почувствовать ход идей, поэтому ограничимся удачами.
Нам достались в наследство от прошлого века среди прочих два великих парадокса: противоречия эфира И «катастрофа Рэлея-Джинса». Первый парадокс устранила теория относительности. Второй привел к зарождению квантовой теории.
В 1900 году Макс Планк задался целью понять причины странного распределения по частотам интенсивности электромагнитного излучения, которое находится в тепловом равновесии в ящике с нагретыми стенками («черное» излучение). Нужно было объяснить эмпирический закон Вина - интенсивность излучения при большой частоте света экспоненциально падает с увеличением частоты, - между тем как по классической статистике плотность энергии должна расти с частотой. Мы уже упоминали о «катастрофе Рэлея - Джинса» в начале второй главы.
Читать дальше