«Я советов не даю, но все-таки скажу…»
(из разговора с другом)
Вот разумная, на мой взгляд, последовательность действий в теоретической физике, а может быть, и не только в ней. (В связи с этим рекомендую читателям блестящую книгу Д. Пойа «Как решать задачу».) Следует начать с попытки решения задачи до изучения литературы. Это первое знакомство с задачей без предвзя-тостей, продиктованных предшествующими работами, первые качественные оценки порядков ожидаемых величин, первые поиски путей решения, во многом определяют будущий ход работы. Возникает активное отношение к изучению литературы (вторая стадия работы). Изучение впрок всегда менее эффективно, чем изучение для дела, под определенным углом зрения. После этого или одновременно выясняются ограничения, накладываемые на возможный результат общими принципами теоретической физики, например, законами сохранения. Далее следует приступить к попытке нахождения грубого качественного решения при различных значениях параметров задачи. Затем - попытаться найти количественное решение задачи в предельных случаях, при значениях параметров, когда задача существенно упрощается. Далее наступает, быть может, самая важная и трудная часть работы. Полученные результаты анализируются и критикуются всеми методами, о которых мы говорили. Если все добытое до этого окажется верным, можно приступить к последнему усилию - получить количественный результат аналитически или с помощью вычислительных машин. И конечно, на всех стадиях работа должна обсуждаться со всеми, кто занимался этой или близкими задачами. Завершение работы - ее публикация. Следует уже подготовленную к печати законченную работу какое-то время «выдержать» и затем просмотреть снова. Срок выдержки остается на совести автора.
Иногда ошибка видна сразу
Какие ограничения накладывают на решение задачи общие теоремы теоретической физики?
В солнечный зимний день большая компания загорала на вершине Кохты в Бакуриани. Молодые люди радовались и удивлялись голубому цвету неба. Один из них сказал: «Голубой цвет неба объясняется тем, что по закону Рэлея рассеяние света пропорционально третьей степени частоты, и голубой свет, имеющий большую частоту, сильнее рассеивается». Этого я, как физик, стерпеть не мог. «Рассеяние света - явление обратимое и не может содержать нечетных степеней частоты, а закон Рэлея содержит не третью, а четвертую степень этой частоты. Допустив нечетную степень частоты в рассеянии, мы нарушаем закон обратимости природы, а значит, и всю термодинамику…» Этот разговор сильно повысил мой авторитет, подорванный невысокой горнолыжной квалификацией.
Действительно, есть такая теорема: все уравнения физики, кроме слабых взаимодействий, о которых речь пойдет позже, а следовательно, и явления природы, ими описываемые, не изменяются при изменении знака времени, а выглядят одинаково, смотреть ли на них из прошлого в будущее или из будущего в прошлое. Из этого свойства и следует, что обратимые величины могут быть только четными функциями частоты.
Как пример анализа логической структуры доказательства рассмотрим теоретическое доказательство того, что все тела падают с одинаковой скоростью. Оно было приведено Галилеем в его знаменитой книге «Беседы и математические доказательства, касающиеся двух новых отраслей науки» (1638). Опровергая утверждение Аристотеля, что более тяжелые тела падают с большей скоростью, Галилей приводит следующие рассуждения. Допустим, Аристотель прав, и тяжелое тело падает быстрее. Скрепим два тела - легкое и тяжелое. Тяжелое тело, стремясь двигаться быстрее, будет ускорять легкое, а легкое, стремясь двигаться медленнее, будет тормозить тяжелое. Поэтому скрепленное тело должно двигаться с промежуточной скоростью. Но ведь оно тяжелее, чем каждая из его частей, и будет двигаться не с промежуточной скоростью, а со скоростью, большей, чем скорость его более тяжелой части. Возникло противоречие, и значит, исходное предположение неверно.
Так же можно привести к противоречию и обратное предположение, что легкие тела падают быстрее тяжелых. Можно повторить это рассуждение, скрепляя два одинаковых тела. Они не ускоряют и не замедляют друг друга и должны двигаться со скоростью каждого из них; таким образом, тело, вдвое большее, двигается с той же скоростью. Следовательно, все тела падают с одинаковой скоростью.
Читать дальше