Сводка полученных сведений об электрической цепи
Мы представляем себе кулоны как крупные сгустки электронов, которые движутся по цепи, отдавая энергию, приобретенную при каждом прохождении их через батарею. Этот поток зарядов, который мы называем током и измеряем в кулонах в секунду и амперах, одинаков во всех точках цепи. Если цепь разделяется на несколько параллельных ветвей, то ток разделяется на меньшие токи, сумма которых равна полному току в основной цепи. Поскольку мы считаем, что кулон при полном обходе цепи отдает весь свой запас энергии, мы полагаем, что напряжения на всех участках внешней цепи должны в сумме равняться полному напряжению на зажимах батареи или генератора. Мы убеждаемся, что так оно и есть. Если из проводников, подчиняющихся закону Ома, составляется сложная цепь, то мы можем применить к ней эти представления о разветвлении токов и суммировании напряжений и рассчитать «сопротивление» группы проводников, соединенных последовательно или параллельно. (Эти расчеты имеют важное значение в технике, но здесь они нам не нужны.)
Опыты с радиолампами заставляют предполагать, что раскаленные металлы испускают отрицательно заряженные носители тока, которые мы называем электронами, и мы считаем, что электроны могут являться носителями тока в металлических проводах. Это предположение подтверждается некоторыми косвенными данными. Мы представляем себе рой электронов, беспорядочно блуждающих в решетке из атомов металла; электроны совершают дрейф под влиянием приложенного напряжения и теряют приобретенную ими кинетическую энергию при столкновениях, сообщая атомам тепло.
При электролизе (см. гл. 35 ), как мы считаем, носителями тока являются не электроны, а положительные и отрицательные ионы (заряженные атомы, которые потеряли или приобрели лишние электроны). Этим носителям тока тоже приходится преодолевать трение в жидкости — столкновения с молекулами, — «поэтому и они теряют энергию в виде тепла; кроме того, ионам, возможно, приходится преодолевать на своем пути тормозящие электрические силы, появляющиеся при химических превращениях у электродов. Таким образом, часть энергии ионов превращается в химическую энергию. В электромоторах носители тока — по нашему предположению электроны — встречают на своем пути поперечные магнитные поля, которые развивают э.д.с., тормозящую движение электронов. Поэтому приложенному извне напряжению приходится продвигать электроны, преодолевая дополнительные силы, вследствие чего часть энергии электронов преобразуется в механическую энергию.
Закон Ома . Правила и расчеты
Опыты Ома, подтвержденные впоследствии с большой точностью для широкого диапазона токов, показали, что для металлов и некоторых других проводников отношение напряжение / сила тока при неизменной температуре остается постоянным. Это применимо к каждому участку цепи и ко всей цепи. В последнем случае мы говорим:
Э.Д.С. / СИЛА ТОКА = СОПРОТИВЛЕНИЕ ВСЕЙ ЦЕПИ
(включая сопротивление батареи или генератора).
Постоянство отношения напряжение / сила тока представляет собой важный результат опыта. В большинстве исследований постоянному отношению присваивают наименование после того, как устанавливают его постоянство. Ом планировал свои исследования, исходя из представления о сопротивлении потоку. Тем не менее неразумно говорить, будто Ом доказал, что отношение напряжение / сила тока равно уже известной величине — сопротивлению, словно сопротивление было вполне определенной характеристикой, данной (и названной) неким божеством задолго до Ома и ожидавшей, пока докажут, что она равна отношению напряжение/сила тока. Правильнее сказать, что отношение напряжение / сила тока = постоянной, называемой сопротивлением.
Ом установил, что при увеличении длины проволоки вдвое сопротивление удваивается: сопротивление прямо пропорционально длине проводника. При увеличении диаметра проволоки вдвое сопротивление уменьшается в четыре раза: сопротивление обратно пропорционально площади поперечного сечения проводника. Объединяя оба утверждения, мы записываем:
Постоянная ρ называется удельным сопротивлением. Она представляет собой характеристику материала проволоки и не зависит от формы и размера образца (хотя она может изменяться с температурой). Обратная величина, 1/ ρ , называется электропроводностью; она обладает замечательным сходством с теплопроводностью. Чтобы сравнить обе величины, запишем
Читать дальше