Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1973, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
  • Автор:
  • Издательство:
    Мир
  • Жанр:
  • Год:
    1973
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг книги:
    4.5 / 5. Голосов: 2
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оно разрешает конфликты одним правилом, модифицирующим классическую физику: Любой обмен энергией между веществом и излучением происходит лишь определенными порциями энергии, «квантами». Для каждой порции или кванта

ЭНЕРГИЯ = (УНИВЕРСАЛЬНАЯ ПОСТОЯННАЯ, h)∙(ЧАСТОТА ИЗЛУЧЕНИЯ).

Таким образом, дискретны не только вещество и заряды, поделенные на части в виде атомов и электронных зарядов, но в определенных важных обстоятельствах дискретна также и энергия. Наименьшей величины (атомной единицы) энергии не существует, но (для определенных форм энергии) у величины отношения энергии к частоте имеется универсальный «атом», или единица, h . Это квантовое ограничение выглядит безобидным — особенно для читателей, слышавших об этом раньше, — но оно вступает в противоречие с ньютоновской механикой, если ее применять к молекулам, атомам, электронам…:

1) Раскалите добела кусок черного металла так, чтобы он испускал интенсивный поток излучения: ультрафиолет + видимый свет + инфракрасное излучение + радиоволны. Общие соображения, основанные на ньютоновской механике, предсказывают, что больше всего энергии будет излучаться в области ультрафиолета (самая короткая длина волны, наибольшая частота). Но на самом деле это неверно. Термоэлемент, измеряющий интенсивность излучения, показывает, что максимум потока энергии приходится на середину спектра. Это противоречие было известно в 1900 г. и впервые привело к предположению о существовании квантового ограничения. При наложении этого ограничения механическая теория предсказывает наблюдаемый спектр.

2) Нагревайте твердый образец или газ и измеряйте удельную теплоемкость при различных температурах. Ньютоновская физика предсказывает, что при неизменных прочих условиях удельная теплоемкость остается постоянной, не зависит от температуры. Неверно. Измеренная величина удельной теплоемкости при изменении температуры от очень низкой до очень высокой растет от очень малой величины до величины, предсказываемой классической физикой. Квантовое ограничение предсказывает это (см. гл. 30 ).

3) Попадая на поверхность металла, свет может вырвать оттуда электроны. По классической механике мы представили бы, что приходящие на поверхность световые волны все сильней и сильней раскачивают электрон, «привязанный» к атому металла, до тех пор пока электрон не оторвется на свободу. С этой точки зрения, чтобы достаточно сильно раскачать электрон слабым светом, всегда необходима длительная выдержка; кроме того, очень сильный свет (большой интенсивности) может выбрасывать электроны с большей энергией. Неверно. Независимо от того, тусклый свет или яркий, электроны вылетают с одной и той же полной энергией. Этот «фотоэлектрический эффект» оказался легко поддающимся объяснению и расчету после того, как Эйнштейн предположил, что энергия света упакована в «снаряды», порции.

4) Определенные экспериментальные свойства спектров кажутся странными с точки зрения классической физики. В последнем столетии были измерены и выражены простыми формулами интервалы между яркими линиями в спектре горящих газов. Классически их нельзя «объяснить». Аналогичные закономерности проявляются в крайней коротковолновой части спектров рентгеновских лучей. Бор показал, каким образом квантовая теория может дать хорошее объяснение этим фактам и обеспечить широкую область для дальнейшей интерпретации.

В следующих разделах — более детально обсуждаются все эти вопросы, при решении которых были сформированы основы квантовой теории.

Спектр белого света

Раскалите добела кусок черного металла и проанализируйте его излучение. Еще лучше, разогрейте печку и позвольте излучению выходить через дырку в ее стенке. Вспомните, что хороший поглотитель должен быть и хорошим излучателем [ гл. 26, задача 23 , и гл. 4, опыты 6, ж) и з) ]. Самый лучший излучатель — это абсолютно черное тело. Дырка в ящике является хорошим поглотителем: все, что попадает внутрь, будет отражаться там от стенки к стенке до тех пор, пока совсем не поглотится, — никакая черная краска на собачьей конуре не выглядит чернее открытой для собаки дверцы. Поэтому дырка должна быть абсолютным излучателем. Внутри печки излучение должно содержать полный набор волн, типичный для излучения «черного тела», а весь комплект содержащегося внутри набора выходит через дырку. Разложите излучение в спектр с помощью дифракционной решетки и измерьте с помощью зачерненного термоэлемента поток энергии в различных областях. График на фиг. 173 показывает результаты такого эксперимента.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»

Обсуждение, отзывы о книге «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x